Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

13 : Machine level programming
March 25, 2013

Today: Machine Level Programming

m Review
m History of Intel processors

m Assembly programming
" GCCdemo

m Intel architecture
= Data sizes

= Registers
= QOperands

m Data movement instructions

Review

m First week
= Bit, bytes, and hexadecimal
= Two’s complement and signed numbers
" Boolean logic and bitwise operations
" |nteger arithmetic

m Second week
" Floating point representation
= Boolean algebra

m Third week
= K-maps
= 1 bit and larger adders
= Flipflops & registers
= ALU design

Review

m Computational model
" CPU components : registers, memory, ALU

\ .._.\
4 —>»
|—> Data \
Register #
- PC {¢> Address Instruction Registers ALU Address
_ Register # Data
Instruction - memor
A
memory Register # I y
> Data

Today: Machine Level Programming

m Review
m History of Intel processors

m Assembly programming
" GCCdemo

m Intel architecture
= Data sizes

= Registers
= QOperands

m Data movement instructions

Intel x86 Processors

m Totally dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
= In terms of speed. Less so for low power.

Intel x86 Processors: Overview

Architectures Processors
X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium IlI
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo

SSE4 Core i7

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

12

Intel’s 64-Bit
m Intel Attempted Radical Shift from IA32 to I1A64

= Totally different architecture (Iltanium)
= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on |IA64
" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

13

Today: Machine Level Programming

m Review
m History of Intel processors

m Assembly programming
" GCCdemo

m Intel architecture
= Data sizes

= Registers
= QOperands

m Data movement instructions

Definitions

m Architecture: (also instruction set architecture: ISA) The
parts of a processor design that one needs to understand
to write assembly code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Example ISAs (Intel): x86, IA, IPF

16

Assembly Programmer’s View

CPU Memory
Addresses
PC Registers | Object Code
. Data | Program Data
Condition Instructions OS5 Data
Codes)
Stack
m Programmer-Visible State
" PC: Program counter
= Address of next instruction
= Called “EIP” (IA32) or “RIP” (x86-64)

= Register file

[|
= Heavily used program data Memory

= Condition codes » Byte addressable array

» Store status information about most * Code, user data, (some) OS data

recent arithmetic operation » Includes stack used to support

= Used for conditional branching procedures

Turning C into Object Code

" Codeinfiles pl.c p2.c

= Compile with command: gcc -01 pl.c p2.c -o p

= Use basic optimizations (-01)

= Put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

Compiler (gcc -S)

A 4

Asm program (pl.s p2.s)

Assembler (gcc or as)

v

Object program (pl .o p2.0) Static libraries

(.a)

Linker (gcc or 1d)

v

Executable program (p)

18

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl %ebp
int t = x+y; movl %esp, 3ebp
return t; movl 12 (%ebp) , Seax
} addl 8 (%ebp) , 3eax
popl %ebp
//’ret

Some compilers use /

instruction “leave”

Obtain with command

/usr/local/bin/gcc -m32 -01 -S code.c

Produces file code. s

19

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)
= Word size is 2 bytes (16 bits)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

20

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Transfer control
" Unconditional jumps to/from procedures
® Conditional branches

21

Object Code

Code for sum
m Assembler

0x401040 <sum>: " Translates . s into .o

0x55
0x89 = Binary encoding of each instruction
Oxe> = Nearly-complete image of executable code
0x8b . : -
0§45 = Missing linkages between code in different
0x0c files
0x03 m Linker
0x45 .
= Resolves references between files
0x08 | Total of 11 bytes
0x5d y " Combines with static run-time libraries

Oxc3 e Each instruction

1,2, or 3 bytes = E.g., code formalloc, printf

i . . , _
e Starts at address Some libraries are dynamically linked

0x401040 = Linking occurs when program begins
execution

22

Machine Instruction Example

int t = x+y;

addl 8 (%ebp) , %eax

Similar to expression:
X +t= y

More precisely:

int eax;

int *ebp;

eax += ebp[2]

0x80483ca: 03 45 08

m C Code

= Add two signed integers

m Assembly

= Add 2 4-byte integers
= “Long” words in GCC parlance
= Same instruction whether signed

or unsigned
" Operands:
x: Register eax
y: Memory M[%ebp+8]
t: Register seax

—Return function value in $eax

m Object Code
= 3-byte instruction
® Stored at address 0x80483ca

23

Disassembling Object Code

Disassembled

080483c4 <sum>:

80483c4:
80483c5:
80483c7:
80483ca:
80483cd:
80483ce:

55
89
8b
03
5d
c3

eb5
45 Oc
45 08

push

mov
mov
add
pop
ret

sebp

sesp, sebp

Oxc (%ebp) , seax
0x8 (%ebp) , seax
%ebp

m Disassembler

objdump -d p

Useful tool for examining object code

Analyzes bit pattern of series of instructions

Produces approximate rendition of assembly code

Can be run on either a. out (complete executable) or

.o file

24

Alternate Disassembly

Object

0x401040:
0x55
0x89
Oxe5
0x8b
0x45
0xOc
0x03
0x45
0x08
0x5d
0xc3

Disassembled

sebp

sesp, sebp

Oxc (%ebp) , $eax
0x8 (%ebp) , seax
sebp

Dump of assembler code for function sum:
0x080483c4 <sum+0>: push

0x080483c5 <sum+1>: mov

0x080483c7 <sum+3>: mov

0x080483ca <sum+6>: add

0x080483cd <sum+9>: pop

0x080483ce <sum+10>: ret

m Within gdb Debugger
gdb p
disassemble sum

" Disassemble procedure
x/11lxb sum

= Examine the 11 bytes starting at sum

25

What Can be Disassembled?

% objdump -d WINWORD .EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, $ebp
30001003: 6a ff push SOXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

GCCdemo

Generate assembly code
= gcc-m32-01-S code.c #output assembler in code.s

Generate object code

" gcc-m32-01 -c code.c #output object code in code.o

Using a debugger

= gdb code.o
= disassemble sum #disassemble code in memory
= x/17xb sum #inspect machine code in memory
= quit #quit debugger

Converting to object code

" objdump -d code.o #disassemble code

27

Today: Machine Level Programming

m Review
m History of Intel processors

m Assembly programming
" GCCdemo

m Intel architecture
= Data sizes

= Registers
= QOperands

m Data movement instructions

IA32 data sizes

C declaration Intel data type Asm code suffix Size
char Byte b 1
short Word W 2
int Double word 1 4
long int Double word 1 4
long long int — — 4
char x Double word 1 4
float Single precision S 4
double Double precision 1 8
long double Extended precision t 10/12

29

Integer Registers (1A32) Origin

(mostly obsolete)

-
%eax Sax 2ah gal accumulate
" $ecx $cx $ch $cl counter
)
(o]
- o) 2d sdh edl data
3 sedx cdX 5 5
- <
o o b b 2bh bl base
g Oe x o DX ° o)
Q
0o 9esi esi source
(o) ° index
. destination
o -
L $edi $di index
o o stack
c€Sp °SP pointer
base
o %b
sebp P pointer
\)
Y

16-bit virtual registers

(backwards compatibility) 30

Moving Data: IA32 Seax

m Moving Data secx
mov1l Source, Dest: Sedx

o
m Operand Types sebx
" |mmediate: Constant integer data sesi
= Example: $0x400, $-533 Sedi
= Like C constant, but prefixed with *$’ Yesp

o

= Encoded with 1, 2, or 4 bytes

sebp

= Register: One of 8 integer registers

= Example: $eax, %edx
= But $esp and $ebp reserved for special use
= Others have special uses for particular instructions
= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: ($eax)
= Various other “address modes”

3

movl Operand Combinations

Source Dest

4 { Reg movl
Imm
Mem movl

movl < Reg Reg movl
Mem movl

\ Mem Reg movl

Src,Dest

$S0x4, %eax

$-147, (%eax)

$eax, sedx

$eax, (%edx)

(%eax) , $edx

C Analog
temp = 0x4;
*p = -147;

temp2 = templ;

*p = temp;

temp = *p;

Cannot do memory-memory transfer with a single instruction

32

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx), %$eax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movl 8 (%ebp) , Sedx

33

Using Simple Addressing Modes

swap:
pushl %ebp A
void swap (int *xp, int *yp) movl %esp,%ebp . Set
{ int £0 = *xp; pushl %ebx J Up
int tl1 = *yp;)
xxp = t1; movl 8 (%ebp), %Sedx
*yp = tO0; movl 12 (%ebp), %ecx
} movl $edx), %ebx > Body
movl %ecx), %eax
movl $%eax, (%edx)
movl %ebx, (%ecx) J

popl %ebx

popl %ebp Finish
ret

34

Using Simple Addressing Modes

void swap (int *xp, int *yp)

{

int t0 = *xp;
int t1 = *yp;
*xp = tl1;
*yp = tO;

swap:

movl
movl
movl
movl
movl
movl

8 (%ebp)

, %edx

12 ($ebp) , %ecx

$edx) ,
$ecx) ,
$eax,
$ebx,

$ebx
Seax
$edx)
$ecx)

\

s Body

J

35

Understanding Swap

void swap(int *xp, int *yp) : Stack
{ .
int t0 = *xp; Offset : (In memory)
int t1 = *yp;
*yp = tO0; 8 Xp
}
4 Rtn adr

0 |Old %ebp—— %ebp

-4 |Old %ebx[— %
Register Value e ©sP
sedx Xp
secx VP
2 ebx £0 movl 8 (%ebp), %edx # edx = xp
. 1 movl 12 (%ebp), %ecx # ecx = yp
seax t movl (%edx), %ebx # ebx = *xp (t0)
movl %ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

36

Understanding Swap

eax
% edx Offset
secx YP 12
X 8
%$ebx P
4
sesi
%ebp - > 0
%edi -4
sesp
movl 8 (%ebp), %edx #
%ebp| 0x104 movl 12 (%ebp), %ecx #
movl %$edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
08124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

37

Understanding Swap

Seax
sedx| 0x124 Offset
secx YP 12
X 8
%$ebx P
4
sesi
%ebp - > 0
%edi -4
sesp
movl 8 (%ebp), %edx #
%ebp| 0x104 movl 12 (%ebp), %ecx #
movl %$edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

38

Understanding Swap

Seax
sedx| 0x124 Offset
secx| 0x120 YP 12
X 8
%$ebx P
4
sesi
%ebp — 0
%edi -4
sesp
movl 8 (%ebp), %edx #
%ebp| 0x104 movl 12 (%ebp), %ecx #
movl %$edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

39

Understanding Swap

Seax
sedx| 0x124 Offset
secx| 0x120 YP 12
8
$ebx 123 *P
4
sesi
%ebp - > 0
%edi -4
sesp
movl 8 (%ebp), %edx #
%ebp| 0x104 movl 12 (%ebp), %ecx #
movl %edx) , %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

40

Understanding Swap

Seax 456
sedx| 0x124 Offset
secx| 0x120 YP 12
8
$ebx 123 *P
4
sesi
%ebp - > 0
%edi -4
sesp
movl 8 (%ebp), %edx #
%ebp| 0x104 movl 12 (%ebp), %ecx #
movl %$edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

4

Understanding Swap

%eax 456
sedx| 0x124 Offset
secx| 0x120 YP 12
8
%ebx 123 P
4
sesi
%ebp - > 0
%edi -4
sesp
movl 8 (%ebp), %edx #
%ebp| 0x104 movl 12 (%ebp), %ecx #
movl %$edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address

456 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
08124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

42

Understanding Swap

%eax 456
sedx| 0x124 Offset
secx| 0x120 YP 12
8
%$ebx 123 *P
4
sesi
%ebp - > 0
%edi -4
sesp
movl 8 (%ebp), %edx #
%ebp| 0x104 movl 12 (%ebp), %ecx #
movl %$edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address

456 0x124
123 0x120
Oxllc
0x118
0x114
0x120 0x110
08124 0x10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

43

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S)

= D: Constant “displacement” 1, 2, or 4 bytes

Mem[Reg[Rb]+S*Reg[Ri]+ D]

= Rb: Base register: Any of 8 integer registers

= Ri: Index register: Any, except for $esp

= Unlikely you’d use $ebp, either

=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases
(Rb,Ri)
D(Rb,Ri)
(Rb,Ri,S)

Mem
Mem
Mem

Reg
Reg
Reg

Rb]
Rb]
Rb)]

+Reg[Ri]]
+Reg|[Ri]+D]
+S*Reg[Ri]]

44

Addressing modes

Type Form Operand value Name
Immediate $Imm Imm Immediate
Register Eq R[E,] Register
Memory Tmm M[Imm] Absolute
Memory (Eq) M[RI[E,]] Indirect
Memory Imm(Ep) M|[Imm + R[E]] Base + displacement
Memory (Ep, E;) M|R[Ep] + R[E;]] Indexed
Memory Imm(Ey, E;) M[Imm + R[Ep] + R[E;]] Indexed
Memory (, Eq, 8) M|R[E;] - s] Scaled indexed
Memory Imm(, E;, s) M[Imm + +R[E;] - 5] Scaled indexed
Memory (Ep, Ei, s) M|[RI[Ep] + R[E;] - 5] Scaled indexed
Memory Imm(Ey, E;y8) M[Imm 4+ R[Ey] + R[E;] - s] Scaled indexed

45

Data movement

Instruction Effect Description

mov SSD D+ S Move

movb Move byte

movw Move word

movl Move double word

movs S,D D < SignExtend(95) Move with sign extension

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

mMovZ S,D D < ZeroExtend(S) Move with zero extension

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

pushl S R[%esp| + R[%esp] — 4; Push double word
M[R[%esp|] + S

popl D D +— M[R[%esp]]; Pop double word

R[%esp] < R[%esp| + 4

46

