CSSE132 Introduction to Computer Systems

12 : Computational model

March 21, 2013

Today: Computational Model

- Basic structures
- Computational model
 - Instructions
 - Execution
 - Save

Basic structures

Clock

Regular signal, clock edges can trigger events

Register

Stores value, can change each clock cycle

Register File

Several addressable read/write registers

ALU

Performs math/logic operations on inputs

Memory

- Stores data and instructions
- Abstracted as large array of byte storage
- Convenient to split into instruction and data

Computational model

Processor

- CPU : Central Processing Unit
 - Large, fast chip that drives most computer operations
- GPU : Graphics Processing Unit
 - Large chip, made of many simple, slow CPUs
 - Operates on vector data

For all processors

- Instruction directs processor operation
- Instructions & data fetched from memory
- Registers store intermediate results
- ALU combines data into new results
- New results can be written back to memory

Processor layout

Combine basic logic structures into datapath

- Input from memory
 - Instructions
 - Data
- Track current instruction with Program Counter (PC) register
- Temporary storage in register file
- Instructions direct ALU to operate on data
- Output result to memory

Most datapaths are clock driven

All the exciting things happen on a clock edge

Y86 datapath

Simplified x86

MIPS datapath

