CSSE132
Introduction to Computer Systems

11 : Basic computational structures
March 20, 2013

Today: Basic computational structures

m Helpful structures
= Decoder/encoder
= Multiplexor/demultiplexor
= Sign extender

m ALU
= ALU control
= Zero detector
= Set less than

Decoder/encoder

m Outputs unique signal based on input

" |nputs: state of systems
= Qutput: unique representative code
= 2 inputs = 22 outputs

m Encoder reverses the process

L 11

T11T

ENo

EN;

EN>

ENj3

Multiplexor

m Select single data stream from multiple channels

= Multiple data inputs

= Single data output

= Control S selects single data stream

v vy

S>

Si

So

— Output

S, Sy So Y
0 0 0 Dy
0 0 1 D,
0 1 0 D,
0 1 1 D;
1 0 0 Dy
1 0 1 D5
1 1 0 Dg
1 1 1 D,

Demultiplexor

m Outputs data to one of multiple data channels
= Single data input
= Multiple data outputs
= Control S selects data output

(=)

[

[\

W

@
S, e S, So Data
I O 0 0 0
| :>_. D, 0 0 1
) 0 1 0
So ® ~ 0 1 1
? 1 0 0
"__Cj—’ D, 10 |
) 1 1 0
1 1 1
F—— D;
Data e g

cocoocoococo~olT

cocoocoo~ooolU

co~ococooolU

—ococococooo|lU

Sign extender

m CPUs work with signed numbers
= \Word size or smaller
= Often need to convert to word size

m Need to duplicate (extend) sign bit
= Preserves original number in larger container

m How to do this?

Sign extender

m CPUs work with signed numbers
= \Word size or smaller
= Often need to convert to word size

m Need to duplicate (extend) sign bit
= Preserves original number in larger container

m How to do this?

= Just connect MSB input to sign extend bits!
" Only need wires

ALU

m Arithmetic Logic Unit

= Responsible for all computations in computer
= Supported operations

= AND

= OR

= Add

= Subtract

= |s less than

= |s equal

= Others: NOT, NOR, NAND...
= Design is similar to adder

= Start with 1 bit ALU, expand

1 bit ALU

m Start with AND and OR operations
" |nputs AandB
= Select operation by control signal OP
= Single output R

m Hint: a multiplexor will help!
= Op0=AND
" Op1=0OR

1 bit ALU

m Start with AND and OR operations
" |nputs AandB
= Select operation by control signal OP
= Single output R

Operati

Ty

on

— Result

1) O\

10

1 bit ALU

m Addin ADD
= We'll use a full adder
Inputs A, B, C,,
Outputs S, C_
S=AB'C '+A’BC '+A’B'C, +ABC.
C.t = AB+BC, +AC,

n

1"

1 bit ALU

m Addin ADD
= We'll use a full adder
" Inputs A, B, C,
" OQutputs S, C_,
= S=AB'C'+A'BC '+A’'B’'C, +ABC,,
" C,,=AB+BC +AC,
m Need to expand mux

Operation
Carryln ‘

Y

(o)

) U

> Result

C

\ Y
+
\}

CarryOut

12

Wider ALU

m Can link 1 bit ALUs together to form large ALU

= 32 bit example Operation
Carryln

Y

a0 | Carryln
b0 ALUO > Result0

CarryOut

Y Y

al — Carryln
b1 ALU1 > Result1

CarryOut

\ \

a2 ., Carryln
b2 ALU2 > Result2

CarryOut

a31_—,| Carryln
ALU31 > Result31

b31—

Subtract

m Given that 1 bit ALUs form larger ALUs, implement
Su btraCt Operation

= Remember Two’s complement! Caryin
= -x = (“x)+1
\
_ | Carryln
m What do we need? » ALUO + Rosulty
— | cCarryOut
Y \
Operation al —» C:ery:n - Resul
Carryln ‘ bl o Carr;JOUt > Resu
Y
a > \ (D
. / \ \d
a2 | Carryln
?\ b2 ALU2 > Result2
'?) 1 > Result) ClarryOut
‘7 :

. s l ;

> N 5
b >
a31—., Carryln
ALU31 > Result31
\/ b31—

CarryOut

14

Subtract

m Given that 1 bit ALUs form larger ALUs, implement
Su btraCt Operation

= Remember Two’s complement! Caryin
= -x = (“x)+1
\
| camyl
m What do we need? bg Lo + Resulto
— | cCarryOut
" |nvertBorA
= Add 1to LSB - N garwl;;
o peration —> ALUT + Resultt
yin ‘ b1 —» CarryOut
[}
a > \ (D
> Y A
_J a2 .| Carryln
?\ b2 ALU2 > Result2
'?) 1 > Result) ClarryOut
‘7 .

. s l ;

> N 5
b >
a31—., Carryln
ALU31 > Result31
\/ b31—

CarryOut

15

Subtract

m InvertB

= Still need to use adder, so don’t expand mux (keep using + op)

= Add control line to select inverted B

Binvert

Operation
Carryln ‘

0

> Result

0C

Yy Y

CarryOut

16

Subtract

m Add 1tolLSB
= |f operation is subtract
= SetLSBcarryinto 1
= Set ALUop to +

m This incredible convenience is
why most computers use
two’s complement

Operation
Carryln

Y

a0 —, Carryln
bo ALUO > Result0

CarryOut

Y Y

al — Carryln
b1 ALUA > Result1

CarryOut

\ \

a2 ., Carryln
b2 ALU2 > Result2

CarryOut

a31—., Carryln
ALU31 > Result31

b31—»|

17

Equal

m Add 1bit ‘zero’ output to ALU
= Setto 1 when A and B are equal

m How to do?
= Subtract A and B

= |f all bits are 0, must be equall!
= OR all bits

" |nvert result

18

Other operations

m Could add more operations
= NOR (invert A)
= Shifting (special hardware)
= Many others...

ALU with NOR support

Ainvert Operation
‘ Binver t Carryl ‘
a — 0 \
T
1 ,_/
HL/ 1
‘7
b — 0
+ 2
1 __/

Set less than

m IfA<B
= R=0x00..01

m IfnotA<B(i.e. A>=B)
= R=0x00....00

m How to do this?
= Subtract is useful
= Sign-bit (MSB) is useful
" Need to expand mux for new operation

20

Set less than

m IfA<B
= R=0x00..01

m IfnotA<B(i.e. A>=B)
= R=0x00....00

m How to do this?
= Set LSB to MSB (sign bit)
= Qutput O for all other bits

21

l Binvert Carryl ‘
Set less than NUGE a
Do
m IfA<B o ﬂ T 2 Resul
= R =0x00..01 1
m Ifnot A<B (i.e. A>=B) —
= R =0x00....00 CarryOut
m How to do this? e
= Add new input ‘less’ E@ Hj C}\
= Can 0 to result mux 1 — | |
= Add new output ‘set’ to MSB ALU I HLé L
= Output MSB result N :’W ; 2
= Use later Less -

Set less than

m IfA<B
= R=0x00..01

m If not A<B(i.e. A>=B)
= R=0x00....00

m How to do this?
= Set ALUs to subtract
= MSB ‘set’ is now sign bit
= Pass MSB ‘set’ to LSB ‘less’
= Set all other ‘less’to 0

Operation

> Result0

> Result1

> Result2

> Result31

Set
> QOverflow

Binvert
Ainvert
Carryln
¢ Y \
a0 —| Carryln
b0 — ALUO
> Less
CarryOut
¢ v Y Y
al —| Carryln
b1 — ALU1
00— Less
CarryOut
¢ \ \ Y
a2 —»| Carryln
b2 — ALU2
00— Less
CarryOut
L : : Carryln :
i
a31—| Carryln
b31— ALU31
0 — Less

23

Set less than

m IfA<B
= R=0x00...01

m If not A<B(i.e. A>=B)
= R=0x00....00

m Result
= Subtract resultsin< 0
= Sign bit of 1 is sent to LSB

" Subtract resultsin>=0
= Sign bit of O is sent to LSB

= All other bits setto 0

Operation

> Result0

> Result1

> Result2

> Result31

Binvert
Ainvert
Carryln
¢ Y \/
a0 —| Carryln
b0 — ALUO
> Less
CarryOut
¢ v Y Y
al —| Carryln
b1 — ALU1
00— Less
CarryOut
¢ \ A Y
a2 —»| Carryln
b2 — ALU2
00— Less
CarryOut
S : © Carryln :
¥ I I S
a31—| Carryln
b31— ALU31
0 — Less

Set
> QOverflow

24

