
1

CSSE132	

Introduc0on	
 to	
 Computer	
 Systems	

11	
 :	
 Basic	
 computa.onal	
 structures	

March	
 20,	
 2013	

2

Today:	
 Basic	
 computa0onal	
 structures	

¢  Helpful	
 structures	

§  Decoder/encoder	

§  Mul.plexor/demul.plexor	

§  Sign	
 extender	

¢  ALU	

§  ALU	
 control	

§  Zero	
 detector	

§  Set	
 less	
 than	

3

Decoder/encoder	

¢  Outputs	
 unique	
 signal	
 based	
 on	
 input	

§  Inputs:	
 state	
 of	
 systems	

§  Output:	
 unique	
 representa.ve	
 code	

§  2	
 inputs	
 =	
 22	
 outputs	

¢  Encoder	
 reverses	
 the	
 process	

154 Computer Organization and Design Fundamentals

A B C EN
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Figure 8-21 Truth Table to Enable a Device for A=1, B=1, & C=0

Decoder circuits are a group of enable circuits that have an
individual output that satisfies each row of the truth table. In other
words, a decoder has a unique output for each combination of ones and
zeros possible at its inputs.

For example, a 2-input decoder circuit with inputs A and B can have
an output that is 1 only when A=0 and B=0, an output that is 1 only
when A=0 and B=1, an output that is 1 only when A=1 and B=0, and
an output that is 1 only when A=1 and B=1. The boolean expressions
that satisfy this decoder circuit are:
 _ _ _ _
EN0 = A·B EN1 = A·B EN2 = A·B EN3 = A·B

This two-input circuit is called a 1-of-4 decoder due to the fact that
exactly one of its four outputs will be enabled at any one time. A
change at any of the inputs will change which output is enabled, but
never change the fact that only one is enabled. As for the logic circuit,
it has four AND gates, one satisfying each of the above boolean
expressions. Figure 8-22 presents this digital circuit.

Figure 8-22 Digital Circuit for a 1-of-4 Decoder

A

B

EN0

EN1

EN2

EN3

4

Mul0plexor	

¢  Select	
 single	
 data	
 stream	
 from	
 mul0ple	
 channels	

§  Mul.ple	
 data	
 inputs	

§  Single	
 data	
 output	

§  Control	
 S	
 selects	
 single	
 data	
 stream	

156 Computer Organization and Design Fundamentals

connected to a single data output. With n binary "select lines," one of 2n
data inputs can be connected to the output. Figure 8-25 presents a block
diagram of a multiplexer with three select lines, S2, S1, and S0, and
eight data lines, D0 through D7.

Figure 8-25 Block Diagram of an Eight Channel Multiplexer

A multiplexer acts like a television channel selector. All of the
stations are broadcast constantly to the television's input, but only the
channel that has been selected is displayed. As for the eight-channel
multiplexer in Figure 8-25, its operation can be described with the truth
table shown in Figure 8-26.

S2 S1 S0 Y
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

Figure 8-26 Truth Table for an Eight Channel Multiplexer

For example, if the selector inputs are set to S2 = 0, S1 = 1, and
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y
will output a 0.

The number of data inputs depends on the number of selector inputs.
For example, if there is only one selector line, S0, then there can only
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the

 S2 S1 S0
D0
D1
D2
D3 Y
D4
D5
D6
D7

Output

156 Computer Organization and Design Fundamentals

connected to a single data output. With n binary "select lines," one of 2n
data inputs can be connected to the output. Figure 8-25 presents a block
diagram of a multiplexer with three select lines, S2, S1, and S0, and
eight data lines, D0 through D7.

Figure 8-25 Block Diagram of an Eight Channel Multiplexer

A multiplexer acts like a television channel selector. All of the
stations are broadcast constantly to the television's input, but only the
channel that has been selected is displayed. As for the eight-channel
multiplexer in Figure 8-25, its operation can be described with the truth
table shown in Figure 8-26.

S2 S1 S0 Y
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

Figure 8-26 Truth Table for an Eight Channel Multiplexer

For example, if the selector inputs are set to S2 = 0, S1 = 1, and
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y
will output a 0.

The number of data inputs depends on the number of selector inputs.
For example, if there is only one selector line, S0, then there can only
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the

 S2 S1 S0
D0
D1
D2
D3 Y
D4
D5
D6
D7

Output

5

Demul0plexor	

¢  Outputs	
 data	
 to	
 one	
 of	
 mul0ple	
 data	
 channels	

§  Single	
 data	
 input	

§  Mul.ple	
 data	
 outputs	

§  Control	
 S	
 selects	
 data	
 output	

158 Computer Organization and Design Fundamentals

multiple printers connected to a computer. A document can only be

printed to one of the printers, so the computer selects one out of the

group of printers to which it will send its output.

The design of a demultiplexer is much like the design of a decoder.

The decoder selected one of many outputs to which it would send a

zero. The difference is that the demultiplexer sends data to that output

rather than a zero.

The circuit of a demultiplexer is based on the non-active-low

decoder where each output is connected to an AND gate. An input is

added to each of the AND gates that will contain the demultiplexer's

data input. If the data input equals one, then the output of the AND gate

that is selected by the selector inputs will be a one. If the data input

equals zero, then the output of the selected AND gate will be zero.

Meanwhile, all of the other AND gates output a zero, i.e., no data is

passed to them. Figure 8-27 presents a demultiplexer circuit with two

selector inputs.

Figure 8-27 Logic Circuit for a 1-Line-to-4-Line Demultiplexer

In effect, the select lines, S0, S1, … Sn, "turn on" a specific AND

gate that passes the data through to the selected output. In Figure

8-27, if S1=0 and S0=1, then the D1 output will match the input from the

Data line and outputs D0, D2, and D3 will be forced to have an output of

zero. If S1=0, S0=1, and Data=0, then D1=0. If S1=0, S0=1, and Data=1,

then D1=1. Figure 8-28 presents the truth table for the 1-line-to-4-line

demultiplexer shown in Figure 8-27.

S1

S0

D0

D1

D2

D3
Data

 Chapter 8: Combinational Logic Applications 159

S1 S0 Data D0 D1 D2 D3
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 0
1 1 1 0 0 0 1

Figure 8-28 Truth Table for a 1-Line-to-4-Line Demultiplexer

8.7 Integrated Circuits
It may appear that much of our discussion up to this point has been

theoretical, but in reality, each of the circuits we've presented can easily
be implemented given the right tools. Prototypes used to test or verify
circuit designs can be made by wiring together small plastic chips that
offer access to the internal components through thin metal pins. These
chips, called integrated circuits (ICs), come in a wide variety of shapes,
sizes, and pin configurations. Figure
8-29 presents a sample of some ICs.

Figure 8-29 Examples of Integrated Circuits

Connecting the metal pins of these chips with other metal pins from
the same chip or additional chips is what allows us to create digital
circuits.

As for what we are connecting to them, the metal pins of the ICs
allow us access to the internal circuitry such as the inputs and outputs
of logic gates. Detailed information is available for all ICs from the
manufacturer allowing designers to understand the internal circuitry.

6

Sign	
 extender	

¢  CPUs	
 work	
 with	
 signed	
 numbers	

§  Word	
 size	
 or	
 smaller	

§  OMen	
 need	
 to	
 convert	
 to	
 word	
 size	

¢  Need	
 to	
 duplicate	
 (extend)	
 sign	
 bit	

§  Preserves	
 original	
 number	
 in	
 larger	
 container	

¢  How	
 to	
 do	
 this?	

7

Sign	
 extender	

¢  CPUs	
 work	
 with	
 signed	
 numbers	

§  Word	
 size	
 or	
 smaller	

§  OMen	
 need	
 to	
 convert	
 to	
 word	
 size	

¢  Need	
 to	
 duplicate	
 (extend)	
 sign	
 bit	

§  Preserves	
 original	
 number	
 in	
 larger	
 container	

¢  How	
 to	
 do	
 this?	

§  Just	
 connect	
 MSB	
 input	
 to	
 sign	
 extend	
 bits!	

§  Only	
 need	
 wires	

8

ALU	

¢  Arithme0c	
 Logic	
 Unit	

§  Responsible	
 for	
 all	
 computa.ons	
 in	
 computer	

§  Supported	
 opera.ons	

§  AND	

§  OR	

§  Add	

§  Subtract	

§  Is	
 less	
 than	

§  Is	
 equal	

§  Others:	
 NOT,	
 NOR,	
 NAND…	

§  Design	
 is	
 similar	
 to	
 adder	

§  Start	
 with	
 1	
 bit	
 ALU,	
 expand	

9

1	
 bit	
 ALU	

¢  Start	
 with	
 AND	
 and	
 OR	
 opera0ons	

§  Inputs	
 A	
 and	
 B	

§  Select	
 opera.on	
 by	
 control	
 signal	
 OP	

§  Single	
 output	
 R	

¢  Hint:	
 a	
 mul0plexor	
 will	
 help!	

§  Op	
 0	
 =	
 AND	

§  Op	
 1	
 =	
 OR	

10

1	
 bit	
 ALU	

¢  Start	
 with	
 AND	
 and	
 OR	
 opera0ons	

§  Inputs	
 A	
 and	
 B	

§  Select	
 opera.on	
 by	
 control	
 signal	
 OP	

§  Single	
 output	
 R	
 C.5 Constructing a Basic Arithmetic Logic Unit C-27

Operation

1

0

Result

a

b

FIGURE C.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE C.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it has
3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE C.5.3 Input and output specifi cation for a 1-bit adder.

AppendixC-9780123747501.indd 27AppendixC-9780123747501.indd 27 26/07/11 6:28 PM26/07/11 6:28 PM

11

1	
 bit	
 ALU	

¢  Add	
 in	
 ADD	

§  We’ll	
 use	
 a	
 full	
 adder	

§  Inputs	
 A,	
 B,	
 Cin	

§  Outputs	
 S,	
 Cout	

§  S	
 =	
 AB’Cin’+A’BCin’+A’B’Cin+ABCin	

§  Cout	
 =	
 AB+BCin+ACin	

12

1	
 bit	
 ALU	

¢  Add	
 in	
 ADD	

§  We’ll	
 use	
 a	
 full	
 adder	

§  Inputs	
 A,	
 B,	
 Cin	

§  Outputs	
 S,	
 Cout	

§  S	
 =	
 AB’Cin’+A’BCin’+A’B’Cin+ABCin	

§  Cout	
 =	
 AB+BCin+ACin	

¢  Need	
 to	
 expand	
 mux	

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page C-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Bin vert, but

AppendixC-9780123747501.indd 29AppendixC-9780123747501.indd 29 26/07/11 6:28 PM26/07/11 6:28 PM

13

Wider	
 ALU	

¢  Can	
 link	
 1	
 bit	
 ALUs	
 together	
 to	
 form	
 large	
 ALU	

§  32	
 bit	
 example	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

14

Subtract	

¢  Given	
 that	
 1	
 bit	
 ALUs	
 form	
 larger	
 ALUs,	
 implement	

subtract	

§  Remember	
 Two’s	
 complement!	

§  -­‐x	
 =	
 (~x)+1	

¢  What	
 do	
 we	
 need?	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page C-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Bin vert, but

AppendixC-9780123747501.indd 29AppendixC-9780123747501.indd 29 26/07/11 6:28 PM26/07/11 6:28 PM

15

Subtract	

¢  Given	
 that	
 1	
 bit	
 ALUs	
 form	
 larger	
 ALUs,	
 implement	

subtract	

§  Remember	
 Two’s	
 complement!	

§  -­‐x	
 =	
 (~x)+1	

¢  What	
 do	
 we	
 need?	

§  Invert	
 B	
 or	
 A	

§  Add	
 1	
 to	
 LSB	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page C-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Bin vert, but

AppendixC-9780123747501.indd 29AppendixC-9780123747501.indd 29 26/07/11 6:28 PM26/07/11 6:28 PM

16

Subtract	

¢  Invert	
 B	

§  S.ll	
 need	
 to	
 use	
 adder,	
 so	
 don’t	
 expand	
 mux	
 (keep	
 using	
 +	
 op)	

§  Add	
 control	
 line	
 to	
 select	
 inverted	
 B	

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

(

 a + b) =
_
 a ·

__
 b

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU.
Figure C.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS
These four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most MIPS instructions can be performed
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction (slt).
Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse quently, slt will
set all but the least signifi cant bit to 0, with the least signifi cant bit set according to
the comparison. For the ALU to perform slt, we fi rst need to expand the three-input

 C.5 Constructing a Basic Arithmetic Logic Unit C-31

FIGURE C.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and
__
 b . By

selecting
__

 b (Binvert = 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s comple ment
subtraction of b from a instead of addition of b to a.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

1

0

AppendixC-9780123747501.indd 31AppendixC-9780123747501.indd 31 26/07/11 6:28 PM26/07/11 6:28 PM

17

Subtract	

¢  Add	
 1	
 to	
 LSB	

§  If	
 opera.on	
 is	
 subtract	

§  Set	
 LSB	
 carry	
 in	
 to	
 1	

§  Set	
 ALU	
 op	
 to	
 +	

¢  This	
 incredible	
 convenience	
 is	

why	
 most	
 computers	
 use	

two’s	
 complement	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

18

Equal	

¢  Add	
 1bit	
 ‘zero’	
 output	
 to	
 ALU	

§  Set	
 to	
 1	
 when	
 A	
 and	
 B	
 are	
 equal	

¢  How	
 to	
 do?	

§  Subtract	
 A	
 and	
 B	

§  If	
 all	
 bits	
 are	
 0,	
 must	
 be	
 equal!	

§  OR	
 all	
 bits	

§  Invert	
 result	

19

Other	
 opera0ons	

¢  Could	
 add	
 more	
 opera0ons	

§  NOR	
 (invert	
 A)	

§  ShiMing	
 (special	
 hardware)	

§  Many	
 others…	

multiplexor in Figure C.5.8 to add an input for the slt result. We call that new input
Less and use it only for slt.

The top drawing of Figure C.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least signifi cant bit for set on less
than instructions.

What happens if we subtract b from a? If the difference is negative, then a < b
since

(a − b) < 0 ⇒ ((a − b) + b) < (0 + b)
 ⇒ a < b

We want the least signifi cant bit of a set on less than operation to be a 1 if a < b;
that is, a 1 if a − b is negative and a 0 if it’s positive. This desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following this
line of argument, we need only connect the sign bit from the adder output to the
least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of
Figure C.5.10 for the slt operation is not the output of the adder; the ALU out put
for the slt operation is obviously the input value Less.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

FIGURE C.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or
__
 a and

__
 b . By

selecting
_
 a (Ainvert = 1) and

__
 b (Binvert = 1), we get a NOR b instead of a AND b.

C-32 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 32AppendixC-9780123747501.indd 32 26/07/11 6:28 PM26/07/11 6:28 PM

ALU	
 with	
 NOR	
 support	

20

Set	
 less	
 than	

¢  If	
 A	
 <	
 B	

§  R	
 =	
 0x00…01	

¢  If	
 not	
 A	
 <	
 B	
 (i.e.	
 A	
 >=	
 B)	

§  R	
 =	
 0x00….00	

¢  How	
 to	
 do	
 this?	

§  Subtract	
 is	
 useful	

§  Sign-­‐bit	
 (MSB)	
 is	
 useful	

§  Need	
 to	
 expand	
 mux	
 for	
 new	
 opera.on	

21

Set	
 less	
 than	

¢  If	
 A	
 <	
 B	

§  R	
 =	
 0x00…01	

¢  If	
 not	
 A	
 <	
 B	
 (i.e.	
 A	
 >=	
 B)	

§  R	
 =	
 0x00….00	

¢  How	
 to	
 do	
 this?	

§  Set	
 LSB	
 to	
 MSB	
 (sign	
 bit)	

§  Output	
 0	
 for	
 all	
 other	
 bits	

22

Set	
 less	
 than	

¢  If	
 A	
 <	
 B	

§  R	
 =	
 0x00…01	

¢  If	
 not	
 A	
 <	
 B	
 (i.e.	
 A	
 >=	
 B)	

§  R	
 =	
 0x00….00	

¢  How	
 to	
 do	
 this?	

§  Add	
 new	
 input	
 ‘less’	

§  Can	
 0	
 to	
 result	
 mux	

§  Add	
 new	
 output	
 ‘set’	
 to	
 MSB	
 ALU	

§  Output	
 MSB	
 result	

§  Use	
 later	

 C.5 Constructing a Basic Arithmetic Logic Unit C-33

FIGURE C.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b
__
 b , and

(bottom) a 1-bit ALU for the most signifi cant bit. The top drawing includes a direct input that is
connected to perform the set on less than operation (see Figure C.5.11); the bottom has a direct output from
the adder for the less than comparison called Set. (See Exercise C.24 at the end of this Appendix to see how
to calculate overfl ow with fewer inputs.)

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2!

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

AppendixC-9780123747501.indd 33AppendixC-9780123747501.indd 33 26/07/11 6:28 PM26/07/11 6:28 PM

 C.5 Constructing a Basic Arithmetic Logic Unit C-33

FIGURE C.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b
__
 b , and

(bottom) a 1-bit ALU for the most signifi cant bit. The top drawing includes a direct input that is
connected to perform the set on less than operation (see Figure C.5.11); the bottom has a direct output from
the adder for the less than comparison called Set. (See Exercise C.24 at the end of this Appendix to see how
to calculate overfl ow with fewer inputs.)

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2!

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

AppendixC-9780123747501.indd 33AppendixC-9780123747501.indd 33 26/07/11 6:28 PM26/07/11 6:28 PM

23

Set	
 less	
 than	

¢  If	
 A	
 <	
 B	

§  R	
 =	
 0x00…01	

¢  If	
 not	
 A	
 <	
 B	
 (i.e.	
 A	
 >=	
 B)	

§  R	
 =	
 0x00….00	

¢  How	
 to	
 do	
 this?	

§  Set	
 ALUs	
 to	
 subtract	

§  MSB	
 ‘set’	
 is	
 now	
 sign	
 bit	

§  Pass	
 MSB	
 ‘set’	
 to	
 LSB	
 ‘less’	

§  Set	
 all	
 other	
 ‘less’	
 to	
 0	

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long as
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion
logic since it is also associated with that bit.

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b,
and Result = 0 . . . 000 otherwise.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

C-34 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 34AppendixC-9780123747501.indd 34 26/07/11 6:28 PM26/07/11 6:28 PM

24

Set	
 less	
 than	

¢  If	
 A	
 <	
 B	

§  R	
 =	
 0x00…01	

¢  If	
 not	
 A	
 <	
 B	
 (i.e.	
 A	
 >=	
 B)	

§  R	
 =	
 0x00….00	

¢  Result	

§  Subtract	
 results	
 in	
 <	
 0	

§  Sign	
 bit	
 of	
 1	
 is	
 sent	
 to	
 LSB	

§  Subtract	
 results	
 in	
 >=	
 0	

§  Sign	
 bit	
 of	
 0	
 is	
 sent	
 to	
 LSB	

§  All	
 other	
 bits	
 set	
 to	
 0	

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long as
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion
logic since it is also associated with that bit.

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b,
and Result = 0 . . . 000 otherwise.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

C-34 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 34AppendixC-9780123747501.indd 34 26/07/11 6:28 PM26/07/11 6:28 PM

