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A B C EN 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

Figure 8-21   Truth Table to Enable a Device for A=1, B=1, & C=0 

Decoder circuits are a group of enable circuits that have an 
individual output that satisfies each row of the truth table. In other 
words, a decoder has a unique output for each combination of ones and 
zeros possible at its inputs. 

For example, a 2-input decoder circuit with inputs A and B can have 
an output that is 1 only when A=0 and B=0, an output that is 1 only 
when A=0 and B=1, an output that is 1 only when A=1 and B=0, and 
an output that is 1 only when A=1 and B=1. The boolean expressions 
that satisfy this decoder circuit are: 
      _ _       _           _ 
EN0 = A·B EN1 = A·B EN2 = A·B EN3 = A·B 
 

This two-input circuit is called a 1-of-4 decoder due to the fact that 
exactly one of its four outputs will be enabled at any one time. A 
change at any of the inputs will change which output is enabled, but 
never change the fact that only one is enabled. As for the logic circuit, 
it has four AND gates, one satisfying each of the above boolean 
expressions. Figure 8-22 presents this digital circuit. 

 
 
 
 
 
 
 
 

Figure 8-22   Digital Circuit for a 1-of-4 Decoder 
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connected to a single data output. With n binary "select lines," one of 2n 
data inputs can be connected to the output. Figure 8-25 presents a block 
diagram of a multiplexer with three select lines, S2, S1, and S0, and 
eight data lines, D0 through D7. 

 
 
 
 
 
 
 
 
 

Figure 8-25   Block Diagram of an Eight Channel Multiplexer 

A multiplexer acts like a television channel selector. All of the 
stations are broadcast constantly to the television's input, but only the 
channel that has been selected is displayed. As for the eight-channel 
multiplexer in Figure 8-25, its operation can be described with the truth 
table shown in Figure 8-26. 

 
S2 S1 S0 Y 
0 0 0 D0 
0 0 1 D1 
0 1 0 D2 
0 1 1 D3 
1 0 0 D4 
1 0 1 D5 
1 1 0 D6 
1 1 1 D7 

Figure 8-26   Truth Table for an Eight Channel Multiplexer 

For example, if the selector inputs are set to S2 = 0, S1 = 1, and  
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y 
will output a 0. 

The number of data inputs depends on the number of selector inputs. 
For example, if there is only one selector line, S0, then there can only 
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the 

 S2 S1 S0 
D0 
D1 
D2 
D3 Y
D4 
D5 
D6 
D7 

Output 
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multiple printers connected to a computer. A document can only be 

printed to one of the printers, so the computer selects one out of the 

group of printers to which it will send its output. 

The design of a demultiplexer is much like the design of a decoder. 

The decoder selected one of many outputs to which it would send a 

zero. The difference is that the demultiplexer sends data to that output 

rather than a zero. 

The circuit of a demultiplexer is based on the non-active-low 

decoder where each output is connected to an AND gate. An input is 

added to each of the AND gates that will contain the demultiplexer's 

data input. If the data input equals one, then the output of the AND gate 

that is selected by the selector inputs will be a one. If the data input 

equals zero, then the output of the selected AND gate will be zero. 

Meanwhile, all of the other AND gates output a zero, i.e., no data is 

passed to them. Figure 8-27 presents a demultiplexer circuit with two 

selector inputs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-27   Logic Circuit for a 1-Line-to-4-Line Demultiplexer 

In effect, the select lines, S0, S1, … Sn, "turn on" a specific AND 

gate that passes the data through to the selected output. In Figure  

8-27, if S1=0 and S0=1, then the D1 output will match the input from the 

Data line and outputs D0, D2, and D3 will be forced to have an output of 

zero. If S1=0, S0=1, and Data=0, then D1=0. If S1=0, S0=1, and Data=1, 

then D1=1. Figure 8-28 presents the truth table for the 1-line-to-4-line 

demultiplexer shown in Figure 8-27. 
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S1 S0 Data D0 D1 D2 D3 
0 0 0 0 0 0 0 
0 0 1 1 0 0 0 
0 1 0 0 0 0 0 
0 1 1 0 1 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 1 0 
1 1 0 0 0 0 0 
1 1 1 0 0 0 1 

Figure 8-28   Truth Table for a 1-Line-to-4-Line Demultiplexer 

8.7 Integrated Circuits 
It may appear that much of our discussion up to this point has been 

theoretical, but in reality, each of the circuits we've presented can easily 
be implemented given the right tools. Prototypes used to test or verify 
circuit designs can be made by wiring together small plastic chips that 
offer access to the internal components through thin metal pins. These 
chips, called integrated circuits (ICs), come in a wide variety of shapes, 
sizes, and pin configurations. Figure  
8-29 presents a sample of some ICs. 

 

 

Figure 8-29   Examples of Integrated Circuits 

Connecting the metal pins of these chips with other metal pins from 
the same chip or additional chips is what allows us to create digital 
circuits. 

As for what we are connecting to them, the metal pins of the ICs 
allow us access to the internal circuitry such as the inputs and outputs 
of logic gates. Detailed information is available for all ICs from the 
manufacturer allowing designers to understand the internal circuitry. 



6 

Sign	
  extender	
  
¢  CPUs	
  work	
  with	
  signed	
  numbers	
  

§  Word	
  size	
  or	
  smaller	
  
§  OMen	
  need	
  to	
  convert	
  to	
  word	
  size	
  

¢  Need	
  to	
  duplicate	
  (extend)	
  sign	
  bit	
  
§  Preserves	
  original	
  number	
  in	
  larger	
  container	
  

¢  How	
  to	
  do	
  this?	
  



7 

Sign	
  extender	
  
¢  CPUs	
  work	
  with	
  signed	
  numbers	
  

§  Word	
  size	
  or	
  smaller	
  
§  OMen	
  need	
  to	
  convert	
  to	
  word	
  size	
  

¢  Need	
  to	
  duplicate	
  (extend)	
  sign	
  bit	
  
§  Preserves	
  original	
  number	
  in	
  larger	
  container	
  

¢  How	
  to	
  do	
  this?	
  
§  Just	
  connect	
  MSB	
  input	
  to	
  sign	
  extend	
  bits!	
  
§  Only	
  need	
  wires	
  



8 

ALU	
  
¢  Arithme0c	
  Logic	
  Unit	
  

§  Responsible	
  for	
  all	
  computa.ons	
  in	
  computer	
  
§  Supported	
  opera.ons	
  

§  AND	
  
§  OR	
  
§  Add	
  
§  Subtract	
  
§  Is	
  less	
  than	
  
§  Is	
  equal	
  
§  Others:	
  NOT,	
  NOR,	
  NAND…	
  

§  Design	
  is	
  similar	
  to	
  adder	
  
§  Start	
  with	
  1	
  bit	
  ALU,	
  expand	
  



9 

1	
  bit	
  ALU	
  
¢  Start	
  with	
  AND	
  and	
  OR	
  opera0ons	
  

§  Inputs	
  A	
  and	
  B	
  
§  Select	
  opera.on	
  by	
  control	
  signal	
  OP	
  
§  Single	
  output	
  R	
  

¢  Hint:	
  a	
  mul0plexor	
  will	
  help!	
  
§  Op	
  0	
  =	
  AND	
  
§  Op	
  1	
  =	
  OR	
  



10 

1	
  bit	
  ALU	
  
¢  Start	
  with	
  AND	
  and	
  OR	
  opera0ons	
  

§  Inputs	
  A	
  and	
  B	
  
§  Select	
  opera.on	
  by	
  control	
  signal	
  OP	
  
§  Single	
  output	
  R	
   C.5 Constructing a Basic Arithmetic Logic Unit  C-27

Operation

1

0

Result

a

b

FIGURE C.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE C.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it has 
3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder. 

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE C.5.3 Input and output specifi cation for a 1-bit adder.
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Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit  C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows 
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a 
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the 
way through the adder, causing a carry out of the most signifi cant bit (Result31). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page C-38.

Subtraction is the same as adding the negative version of an operand, and this 
is how adders perform subtraction. Recall that the shortcut for negating a two’s 
complement number is to invert each bit (sometimes called the one’s complement) 
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 
between b and  

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added 
multiplexor gives the option of b or its inverted value, depending on Bin vert, but 
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this is only one step in negating a two’s complement number. Notice that the least 
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate 
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +  
__

 b   + 1 = a + ( 
__

 b   + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for inte ger 
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit 
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.
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C-30 Appendix C The Basics of Logic Design
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Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.
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a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows 
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a 
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the 
way through the adder, causing a carry out of the most signifi cant bit (Result31). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page C-38.

Subtraction is the same as adding the negative version of an operand, and this 
is how adders perform subtraction. Recall that the shortcut for negating a two’s 
complement number is to invert each bit (sometimes called the one’s complement) 
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 
between b and  

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added 
multiplexor gives the option of b or its inverted value, depending on Bin vert, but 
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Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.
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A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows 
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quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the 
way through the adder, causing a carry out of the most signifi cant bit (Result31). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page C-38.
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complement number is to invert each bit (sometimes called the one’s complement) 
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between b and  
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 b , as Figure C.5.8 shows.
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 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for 
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

( 
_____

  a + b ) =  
_
 a  ·  

__
 b 

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called 
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. 
Figure C.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS
These four operations—add, subtract, AND, OR—are found in the ALU of almost 
every computer, and the operations of most MIPS instructions can be performed 
by this ALU. But the design of the ALU is incomplete. 

One instruction that still needs support is the set on less than instruction (slt). 
Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse quently, slt will 
set all but the least signifi cant bit to 0, with the least signifi cant bit set according to 
the comparison. For the ALU to perform slt, we fi rst need to expand the three-input 

 C.5 Constructing a Basic Arithmetic Logic Unit  C-31

FIGURE C.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and  
__
 b . By 

selecting  
__

 b  (Binvert = 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s comple ment 
subtraction of b from a instead of addition of b to a.
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Subtract	
  
¢  Add	
  1	
  to	
  LSB	
  

§  If	
  opera.on	
  is	
  subtract	
  
§  Set	
  LSB	
  carry	
  in	
  to	
  1	
  
§  Set	
  ALU	
  op	
  to	
  +	
  

¢  This	
  incredible	
  convenience	
  is	
  
why	
  most	
  computers	
  use	
  
two’s	
  complement	
  

this is only one step in negating a two’s complement number. Notice that the least 
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate 
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +  
__

 b   + 1 = a + ( 
__

 b   + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for inte ger 
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit 
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.
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Equal	
  
¢  Add	
  1bit	
  ‘zero’	
  output	
  to	
  ALU	
  

§  Set	
  to	
  1	
  when	
  A	
  and	
  B	
  are	
  equal	
  

¢  How	
  to	
  do?	
  
§  Subtract	
  A	
  and	
  B	
  
§  If	
  all	
  bits	
  are	
  0,	
  must	
  be	
  equal!	
  
§  OR	
  all	
  bits	
  
§  Invert	
  result	
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Other	
  opera0ons	
  
¢  Could	
  add	
  more	
  opera0ons	
  

§  NOR	
  (invert	
  A)	
  
§  ShiMing	
  (special	
  hardware)	
  
§  Many	
  others…	
  

multiplexor in Figure C.5.8 to add an input for the slt result. We call that new input 
Less and use it only for slt.

The top drawing of Figure C.5.10 shows the new 1-bit ALU with the expanded 
multiplexor. From the description of slt above, we must connect 0 to the Less 
input for the upper 31 bits of the ALU, since those bits are always set to 0. What 
remains to consider is how to compare and set the least signifi cant bit for set on less 
than instructions. 

What happens if we subtract b from a? If the difference is negative, then a < b 
since

(a − b) < 0 ⇒ ((a − b) + b) < (0 + b)
 ⇒ a < b

We want the least signifi cant bit of a set on less than operation to be a 1 if a < b; 
that is, a 1 if a − b is negative and a 0 if it’s positive. This desired result corresponds 
exactly to the sign bit values: 1 means negative and 0 means positive. Following this 
line of argument, we need only connect the sign bit from the adder output to the 
least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of 
Figure C.5.10 for the slt operation is not the output of the adder; the ALU out put 
for the slt operation is obviously the input value Less.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

FIGURE C.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or  
__
 a  and  

__
 b . By 

selecting  
_
 a  (Ainvert = 1) and  

__
 b  (Binvert = 1), we get a NOR b instead of a AND b.
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Set	
  less	
  than	
  
¢  If	
  A	
  <	
  B	
  

§  R	
  =	
  0x00…01	
  
¢  If	
  not	
  A	
  <	
  B	
  (i.e.	
  A	
  >=	
  B)	
  

§  R	
  =	
  0x00….00	
  

¢  How	
  to	
  do	
  this?	
  
§  Subtract	
  is	
  useful	
  
§  Sign-­‐bit	
  (MSB)	
  is	
  useful	
  
§  Need	
  to	
  expand	
  mux	
  for	
  new	
  opera.on	
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Set	
  less	
  than	
  
¢  If	
  A	
  <	
  B	
  

§  R	
  =	
  0x00…01	
  
¢  If	
  not	
  A	
  <	
  B	
  (i.e.	
  A	
  >=	
  B)	
  

§  R	
  =	
  0x00….00	
  

¢  How	
  to	
  do	
  this?	
  
§  Set	
  LSB	
  to	
  MSB	
  (sign	
  bit)	
  
§  Output	
  0	
  for	
  all	
  other	
  bits	
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Set	
  less	
  than	
  
¢  If	
  A	
  <	
  B	
  

§  R	
  =	
  0x00…01	
  
¢  If	
  not	
  A	
  <	
  B	
  (i.e.	
  A	
  >=	
  B)	
  

§  R	
  =	
  0x00….00	
  

¢  How	
  to	
  do	
  this?	
  
§  Add	
  new	
  input	
  ‘less’	
  

§  Can	
  0	
  to	
  result	
  mux	
  
§  Add	
  new	
  output	
  ‘set’	
  to	
  MSB	
  ALU	
  

§  Output	
  MSB	
  result	
  
§  Use	
  later	
  

 C.5 Constructing a Basic Arithmetic Logic Unit  C-33

FIGURE C.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b 
__
 b , and 

(bottom) a 1-bit ALU for the most signifi cant bit. The top drawing includes a direct input that is 
connected to perform the set on less than operation (see Figure C.5.11); the bottom has a direct output from 
the adder for the less than comparison called Set. (See Exercise C.24 at the end of this Appendix to see how 
to calculate overfl ow with fewer inputs.)
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Set	
  less	
  than	
  
¢  If	
  A	
  <	
  B	
  

§  R	
  =	
  0x00…01	
  
¢  If	
  not	
  A	
  <	
  B	
  (i.e.	
  A	
  >=	
  B)	
  

§  R	
  =	
  0x00….00	
  

¢  How	
  to	
  do	
  this?	
  
§  Set	
  ALUs	
  to	
  subtract	
  

§  MSB	
  ‘set’	
  is	
  now	
  sign	
  bit	
  
§  Pass	
  MSB	
  ‘set’	
  to	
  LSB	
  ‘less’	
  
§  Set	
  all	
  other	
  ‘less’	
  to	
  0	
  

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra 
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the 
design, with this new adder output line called Set, and used only for slt. As long as 
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion 
logic since it is also associated with that bit. 

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of 
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0 
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU 
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b, 
and Result = 0 . . . 000 otherwise.
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Set	
  less	
  than	
  
¢  If	
  A	
  <	
  B	
  

§  R	
  =	
  0x00…01	
  
¢  If	
  not	
  A	
  <	
  B	
  (i.e.	
  A	
  >=	
  B)	
  

§  R	
  =	
  0x00….00	
  

¢  Result	
  
§  Subtract	
  results	
  in	
  <	
  0	
  

§  Sign	
  bit	
  of	
  1	
  is	
  sent	
  to	
  LSB	
  
§  Subtract	
  results	
  in	
  >=	
  0	
  

§  Sign	
  bit	
  of	
  0	
  is	
  sent	
  to	
  LSB	
  
§  All	
  other	
  bits	
  set	
  to	
  0	
  

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra 
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the 
design, with this new adder output line called Set, and used only for slt. As long as 
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion 
logic since it is also associated with that bit. 

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of 
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0 
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU 
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b, 
and Result = 0 . . . 000 otherwise.
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