Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

10 : Sequential Logic
March 19, 2013

Today: Sequential Logic

Sequential logic
Clocks

Latches

Flip-flops

Build a register file

Memory

Sequential Logic

m Combinational logic
= Defined by Boolean expression
= Qutput based only on input

m Sequential logic
= Maintains stored values or state
= Retains data for later use

= Qutput based on previous input

. . Next[
" Can build state machines @ Sote
» Current state >)
function
Clock
Outputl
= Outputs

Inputs

Clock

m Produce regular changing signal
= Special hardware that produces oscillating signal
= Several waveform outputs

m Square waveform
= Has period (frequency)
= Duty cycle when power is on
= Rising edge (power up)
= Falling edge (power down)
= Duty cycle often 50% of period

m Will allow us to transition between states

Memory circuit

m Two invertor loop
= Preserve signal

m Circuit is hard to use

® Canread stored value
= Can’t update stored value

m ldeais useful

Memory circuit

m Build invertor with NAND

" Setinputstol

= Same as invertor

e

Memory circuit

m Build loop with NAND

= Same idea

Memory circuit

m Build loop with NAND

= Same idea

" CanstoreQOorl

Changing value

m Toggle top input
" SettoO
= Wait a bit
= Setbackto1l

m What new output if originally
= Top NAND outputis 1?
= Top NAND outputis 0?

A|_B_| AND | NAND.
0 0 0 1

0 1 0 1
1 0 0 1
1 1 1 0

Changing value

m Change top input
" TopinputsettoO
= Stored value becomes 1
= 1 value is retained even if input goes to 1

A | B

0 1

_ @ a O O
_ O -
O A

10

Changing value

m Toggle bottom input
" SettoO
= Wait a bit
= Setbackto1l

m Initial value does not matter!

A|_B_| AND | NAND.
0 0 0 1

0 1 0 1
1 0 0 1
1 1 1 0

1"

Changing value

m Change bottom input
" Bottom input setto O
= Stored value becomes 0
® (Qvalue is retained even if input goes to 1

A | B

0 1

_ O -
O |

12

SR Latch

m Two inputs, S,R (set, reset)
® Change stored value between 1,0

m Two outputs Q, Q’

= Qis stored value
= Q' must always be opposite of stored value

§._D s | R 1QlQ
0 0 U U

*Q

0 1 1 0
. 1 0 0 1
R 0 () 1 1 Q Q

13

Storage cells

m Many different kinds
= Simple ones called ‘latches’
= Bigger, clocked ones called “flip-flops’

m Maintain state/stored value
= Represented by Q
= Can transition between states
= Many conventions

= Previous/initial state: Qq, Q. Q..

= Next state: Q, Q... Q.

m Can have undefined state
= Represented by U

14

Clocked storage

m D flip-flop
= Has 4 inputs (Data, Set, Reset, Clock)
= Has 2 outputs (Q, Q')

= Changes value on clock edge

= We will use rising edge S

D CklalQ
X 0 Q

o | Q4 —Clk o] I
X 1 Q Q P i
X dn Q Q)
0 up 0 1
1 up 1 0

15

Register

m Stores binary values
= Several flip-flops grouped together
= Can store 1 bit for each flip-flop

m Records new value on clock edge
® Can be controlled with write-enable bit

m Allows values to be saved in CPU FD16CE
= Results of calculations DI150] Q[150]
= Query results from memory CE
= Current executing instruction oL ° LR

Often word sized

~ Example 16 bit register

GND

16

16 bit Register Internal

m 16 D Flip-flops

3

@

@

FDCE
=
-

=
-

};;E
;;;E
;;;;E
;;;E
;;;E

FDCE
;
=
.
=
.
"
:F;;E
:F;;E
:F;;E
CCE CLR
: FDCE
:

15:0

17

More registers

m Useful to save several values at once
= Multiple register to hold values

m Give each register/container an ID

" Probably a number

m Useful to select specific register

= For reading or writing

18

Register File

m Collection of registers

m Method to select a single register
" |nput read or write address

m Read or write values

" |nput write data, output read data

m Basic storage unit for CPU
= Stores memory fetches
= Stores calculation results

= Programmer elects to read or write registers
put O0xff, reg@2
store reg@3, mem@Oxec
add 3, -5, reg@3

regFil

el6h8

—

—
—]

CLK
Dataln(15:0)
Write
WriteAddr(2:0)

ReadAddr(2:0)

ReadData(15:0) |

—

19

FD16RE mux16b8

[Datain(15:0) —— p[1s:0] Q[15:0] F—F——+aso) Aso———F—— A(15:0) 0(15:0)
CE 80150———F——] B(15:0)
CLK g ClLk- c cuso———F—— C(15:0)
R osor————f——] D(1s:
decode3b8 ———1 e
Easo———F—— E(15:0)
enable 00 FD16RE Faso———F—— F(15:0)
A2:0) o1 - ool " cuso——] 61s:0)
0z e Hso————F—— H(15:0)
o3 . s@o)
04 R
05 w.—‘
oof———— FD16RE Mux to select read output
o7
- ——] p[15:0] Q[15:0] F—F——<us0
Decoder to select write target *

c

[n ;

oo FD16RE

D[15:0] Q[15:0) |—F—ous0

CE
cik c
R

FD16RE

D[15:0] Q[15:0) |—=——F——=us0)

CE
cLk c
R

FD16RE

D[15:0] Q[15:0) f—3———us0)

CE
cik c
R

FD16RE

D[15:0] Q[15:0] f—=————cus0

Example 8 .
register file

R

——— 1
FD16RE

D[15:0] Q[15:0) |—F—+as0

CE

c

R

Memory

m Similar to a large register file
" Much larger
= Often slower

m Address selects byte to manipulate
= Read data at byte address
= Write data at byte address

m Modern memory
= More complex model
® Hierarchy for read/write
= Read/writes word size chunks

21

