Adapted from ECE 13(

CSSE132
Introduction to Computer Systems

9 : Combinational logic
March 18, 2013

Today: Combinational Logic

m Voting logic and circuit
m Karnaugh maps

m Adding
= 1-bit adder
= 32-bit adder
= |ssues with carry

Karnaugh Maps

m Representation of truth table
= Usually 2D

= Axes are input values

m 2 input AND gate example

= O O
R O = O
r O O O

Karnaugh Maps

m Can be extended to 3 and 4 inputs
= Used to quickly simplify logical expressions
= Adjacent cells differ by one inversion in product
= Nearby cells can be grouped into logical expression

0 1
00 0 0 1 0 1 1
01 0 1 0 0 1 1
11 1 1 0 1 1 0
10 0 1 0 1 1 0

K-Map Example

m Logical expression for this truth table
m SOP:
A’B’'C'D + A’BC’'D’ + A’'BC’'D + A’BCD’+
A’BCD + ABCD’
m Simplify with Theorems

R P R P, R, R 2,0 O O O O O o o

0

~ B P P O O O O Fk P P B O O O

¢ | p_
0 0

) B O O kP kB O O kP B O O +»r L, O

) O B O P O P O kP O FRr O Fr O Bk

o » O O OO OO0 P P P B O O — O

K-Map Example

m Build K-map from truth table
= 2D grid of AB, CD
" Only change one bit per row/col

R P R P, R, R 2,0 O O O O O o o

0

R B P B OO O O P PR PR B O O O

¢ | p_
0 0

m) R O O R B O O R B O O Kr R, O

_ O B O PR O R O R O R O R O Rk

o » O O OO OO0 P P P B O O — O

K-Map Example

m Build K-map from truth table
= 2D grid of AB, CD
" Only change one bit per row/col

00
01
11

10

R P R P, R, R 2,0 O O O O O o o

0

R B P B OO O O P PR PR B O O O

¢ | p_
0 0

m) R O O R B O O R B O O Kr R, O

_ O B O PR O R O R O R O R O Rk

o » O O OO OO0 P P P B O O — O

K-Map Example

m Group nearby ‘1’s

Rectangle shape
No Os inside groups

Number of groups cells must be
power of two

Edges are adjacent

Each group must have at least 1
unique cell

Each group must be as large as
possible

Every 1 must be in a group

m Goal: fewest groups possible

K-Map Example

m Group nearby ‘1’s

Rectangle shape
No Os inside groups

Number of groups cells must be
power of two

Edges are adjacent

Each group must have at least 1
unique cell

Each group must be as large as
possible

Every 1 must be in a group

m Goal: fewest groups possible

K-Map Example

m Form expression from groups
® SOP expression
m Biggest group:
= Contains all of CD
= When A’B
= =A’'B
m Top-left
® Contains part of C'D
" Doesn’t contain any A
= =A'C'D
m Rightmost
= Contains part of CD’

= Does not contain any B’
= =BCD’

m SOP:
A'B'C’'D + A’'BC'D’ + A'BC'D +
A’'BCD’+ A’'BCD + ABCD’

10

Majority voting decision

m Returns true when the majority of inputs are true

m What is the K-map?

m What are the groups?

m What is the simplified expression?

m What is the circuit?

R B =, =2, O O O O

0

R B O O kB K, O

c | R
0

R O B O Rk O K

1

Adding

m Binary adder
" |nputs Aand B
= Qutputs sum and carry

m Cannot accept carry
= Called ‘half-adder’

m Expression
" S=A’B+AB’ =A"B
"= C=AB

AlB S C
O 0 O O

)

N o S

o L P

R O O

12

Full-Adder

m Binary adder
" |Inputs A, B, carry
= Qutputs sum and carry

m Expression
=5=7?
mC=7?

0

R B B, P, O O O O
L B, O O +» B+ O

clslc
0

_, O B O » O B

13

Full-Adder

m Binary adder
" |Inputs A, B, carry
= Qutputs sum and carry

m Expression
=5=7?
mC=7?

) R R Rk, O O O O

0

L B, O O +» B+ O

c s
0O O

_, O B O » O B

O O Fr O Pk B

P P P O P O O O

14

Full-Adder

m Binary adder
" |Inputs A, B, Cin
= Qutputs sum and C_,

m Expression
= S=AB'C,’+A’BC,/+A'B’C,+ABC,,
| Cout = AB+BC|n+AC|n

~ B P P O O O O

0

R B O O +» B+~ O

.| s
0O O

P O B O »r O ¥

B O O KB O Kk B

P B P O P O O O

15

32 bit adder

m Abstract 1bit adder to single unit
m Use 32 1bit adders to create 32 bit adder

out

16

2 bit adder : 2 x 1 bit adders! <

m Use 2 x 1 bit adders

m Wire C_,, into next C,, A add R
= Relies on output from previous
adder B

m Can duplicate for any number
of bits

A add | =«

out

17

Carry issues

m Consider a 32 bit adder

m Final adder needs input from
previous adder (carry result)

m Must wait for 31 other adders!

= Very slow

C1 = (BO*CO)+(A0*C0)+(A0*B0)
C2 = (B1*C1)+(A1*C1)+(A1*B1)

A" | add
|
T

A" | add

18

Carry Expansion

m Can represent any function in two levels of logic

= Build full truth table
= Construct POS/SOP
" Implement with gates

m Let’s do this for carry
cl = (b0*c0)+(a0*c0)+(a0*b0)
c2 = (b1*cl)+(al*cl)+(al*b1l)
So...
d2 = (b1*(b0*c0)+(a0*c0)+(a0*b0))
+ (al * ((b0O*c0)+(a0*c0)+(a0*b0))
+(al*b1)
c3=.. ,c4=..

m Logic becomes very large

= Gate/space cost too much

19

Carry lookahead

m Refactor carry equation
" |nput that generates carry
" |nput that propagates carry

m In general
ci+1 =(bi*ci)+(ai *ci)+(ai * bi)
= (ai * bi) + (ai + bi) * ci
m So, second carry:
c2=(al *bl)+(al+bl)*((a0 * b0) + (a0 + b0O) * cO)
m In these examples

= Generate carry: gi = (ai * bi)
" Propagate carry: pi = (ai + bi) * ci

20

Carry lookahead

m 4-bit carry lookahead
cl=g0+ (p0.c0)
c2=g1+(pl.g0)+(pl.p0.cO)
c3=g2+(p2.gl)+(p2.p1.g0)+(p2.pl1.p0.c0)
cd=g3+(p3.g2)+(p3.p2.g1)+(p3.p2.p1.80)+(p3.p2.pl1l.p0.cO)
m Build unit that computes carries
" |nputs: a0, al, a2, a3, b0, b1, b2, b3, carryln0
" Qutput: cl, c2,c3,c4
= Couple with 4-bit adder

m Each 4-bit adder

= Gets lookahead unit for fast carries

m To expand beyond 4 bits
® Build carry-lookahead unit for the 4 bit carry-lookahead unit!

21

