CSSE132 Introduction to Computer Systems

9 : Combinational logic

March 18, 2013

Today: Combinational Logic

- Voting logic and circuit
- Karnaugh maps
- Adding
 - 1-bit adder
 - 32-bit adder
 - Issues with carry

Karnaugh Maps

- Representation of truth table
 - Usually 2D
 - Axes are input values
- 2 input AND gate example

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

		В	
		0	1
^	0	0	0
Α	1	0	1

Karnaugh Maps

- Can be extended to 3 and 4 inputs
 - Used to quickly simplify logical expressions
 - Adjacent cells differ by one inversion in product
 - Nearby cells can be grouped into logical expression

		C	
		0	1
	00	0	0
АВ	01	0	1
	11	1	1
	10	0	1

		CD			
		00	01	11	10
	00	1	0	1	1
	01	0	0	1	1
AB	11	0	1	1	0
	10	0	1	1	0

- Logical expression for this truth table
- SOP:

$$A'B'C'D + A'BC'D' + A'BC'D + A'BCD' +$$

 $A'BCD + ABCD'$

Simplify with Theorems

Α	В	С	D	R
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

- Build K-map from truth table
 - 2D grid of AB, CD
 - Only change one bit per row/col

Α	В	С	D	R
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

- Build K-map from truth table
 - 2D grid of AB, CD
 - Only change one bit per row/col

		CD			
		00	01	11	10
	00	0	1	0	0
	01	1	1	1	1
AB	11	0	0	0	1
	10	0	0	0	0

Α	В	С	D	R
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

- Group nearby '1's
 - Rectangle shape
 - No 0s inside groups
 - Number of groups cells must be power of two
 - Edges are adjacent
 - Each group must have at least 1 unique cell
 - Each group must be as large as possible
 - Every 1 must be in a group
- Goal: fewest groups possible

		CD			
		00	01	11	10
	00	0	1	0	0
4.5	01	1	1	1	1
AB	11	0	0	0	1
	10	0	0	0	0

- Group nearby '1's
 - Rectangle shape
 - No 0s inside groups
 - Number of groups cells must be power of two
 - Edges are adjacent
 - Each group must have at least 1 unique cell
 - Each group must be as large as possible
 - Every 1 must be in a group
- Goal: fewest groups possible

- Form expression from groups
 - SOP expression
- Biggest group:
 - Contains all of CD
 - When A'B
 - \blacksquare = A'B
- Top-left
 - Contains part of C'D
 - Doesn't contain any A
 - \blacksquare = A'C'D
- Rightmost
 - Contains part of CD'
 - Does not contain any B'
 - = BCD'

■ SOP:

A'B'C'D + A'BC'D' + A'BC'D + A'BCD' + A'BCD' + ABCD'

		CD				
		00	01	11	10	
	00_	0	1	0	0	
	01	1	1	1	1	
AB	11	0	0	0	1	
	10	0	0	0	0	

Majority voting decision

- Returns true when the majority of inputs are true
- What is the K-map?
- What are the groups?
- What is the simplified expression?
- What is the circuit?

Α	В	С	R
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Adding

- Binary adder
 - Inputs A and B
 - Outputs sum and carry
- Cannot accept carry
 - Called 'half-adder'
- Expression
 - \blacksquare S = A'B + AB' = A^B
 - C = AB

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full-Adder

- Binary adder
 - Inputs A, B, carry
 - Outputs sum and carry
- Expression
 - S = ?
 - C = ?

Α	В	С	S	С
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Full-Adder

- Binary adder
 - Inputs A, B, carry
 - Outputs sum and carry
- Expression
 - S = ?
 - C = ?

Α	В	С	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full-Adder

- Binary adder
 - Inputs A, B, C_{in}
 - Outputs sum and C_{out}
- Expression
 - $\blacksquare S = AB'C_{in}' + A'BC_{in}' + A'B'C_{in} + ABC_{in}$
 - $C_{out} = AB + BC_{in} + AC_{in}$

Α	В	C _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

32 bit adder

- Abstract 1bit adder to single unit
- Use 32 1bit adders to create 32 bit adder

2 bit adder: 2 x 1 bit adders!

- Use 2 x 1 bit adders
- Wire C_{out} into next C_{in}
 - Relies on output from previous adder
- Can duplicate for any number of bits

Carry issues

- Consider a 32 bit adder
- Final adder needs input from previous adder (carry result)
- Must wait for 31 other adders!
 - Very slow

$$C1 = (B0*C0)+(A0*C0)+(A0*B0)$$

 $C2 = (B1*C1)+(A1*C1)+(A1*B1)$

. . .

Carry Expansion

- Can represent any function in two levels of logic
 - Build full truth table
 - Construct POS/SOP
 - Implement with gates
- Let's do this for carry

```
c1 = (b0*c0)+(a0*c0)+(a0*b0)

c2 = (b1*c1)+(a1*c1)+(a1*b1)

So...

d2 = (b1*(b0*c0)+(a0*c0)+(a0*b0))

+ (a1 * ((b0*c0)+(a0*c0)+(a0*b0))

+ (a1*b1)

c3 = ... , c4 = ...
```

- Logic becomes very large
 - Gate/space cost too much

Carry lookahead

- Refactor carry equation
 - Input that generates carry
 - Input that propagates carry
- In general

$$ci + 1 = (bi * ci) + (ai * ci) + (ai * bi)$$

= $(ai * bi) + (ai + bi) * ci$

■ So, second carry:

$$c2 = (a1 * b1) + (a1 + b1) * ((a0 * b0) + (a0 + b0) * c0)$$

- In these examples
 - Generate carry: gi = (ai * bi)
 - Propagate carry: pi = (ai + bi) * ci

Carry lookahead

4-bit carry lookahead

$$c1 = g0 + (p0 . c0)$$

 $c2 = g1 + (p1 . g0) + (p1 . p0 . c0)$
 $c3 = g2 + (p2 . g1) + (p2 . p1 . g0) + (p2 . p1 . p0 . c0)$
 $c4 = g3 + (p3 . g2) + (p3 . p2 . g1) + (p3 . p2 . p1 . g0) + (p3 . p2 . p1 . p0 . c0)$

- Build unit that computes carries
 - Inputs: a0, a1, a2, a3, b0, b1, b2, b3, carryIn0
 - Output: c1, c2, c3, c4
 - Couple with 4-bit adder
- Each 4-bit adder
 - Gets lookahead unit for fast carries
- To expand beyond 4 bits
 - Build carry-lookahead unit for the 4 bit carry-lookahead unit!