Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

6 : Floating point
March 12, 2013

Today: Floating Point

m |[EEE Rounding modes
m Conversion process

m Addition, multiplication
m Floating pointin C

Floating Point Operations: Basic Idea

mx +f yv = Round(x + V)
mBX Xfr v = Round(x X V)

m Basic idea
® First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fitinto frac

Rounding

m Rounding Modes (illustrate with S rounding)

N §1.40 S1.60 S1.50 S2.50
= Towards zero S1 S1 S1 S2
= Round down (-) S1 S1 S1 S2
= Round up (+x) S2 S2 S2 S3

= Nearest Even (default) S1

S2

$2

m What are the advantages of the modes?

$2

—-$1.50
—Sl
—$2
—Sl
_Sz

Closer Look at Round-To-Even

m Default Rounding Mode

" Hard to get any other kind without dropping into assembly

= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-

estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values

= Round so that least significant digit is even

= E.g., round to nearest hundredth

1.2349999
1.2350001
1.2350000
1.2450000

1.23
1.24
1.24
1.24

(Less than half way)
(Greater than half way)
(Half way—round up)
(Half way—round down)

Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is @
= “Half way” when bits to right of rounding position = 100...2

m Examples
® Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011; 10.00; (<1/2—down) 2
23/16 10.00110; 10.01; (>1/2—up) 21/4
27/8 10.11100; 11.00; (1/2—up) 3

25/8 10.101002 10.102 (1/2—down) 21/2

Today: Floating Point

m |[EEE Rounding modes
m Conversion process

m Addition, multiplication
m Floating pointin C

Creating Floating Point Number

m Steps

" Normalize to have leading 1
® Round to fit within fraction

S

exp

frac

1

4-bits

" Postnormalize to deal with effects of rounding

m Case Study

3-bits

= Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128
15
33
35

138
03

10000000
00001101
00010001
00010011
10001010
00111111

Normalize

m Requirement
= Set binary point so that numbers of form 1.xxxxx

S exp

frac

1 4-bits

= Adjust all to have leading one

= Decrement exponent as shift left

Value

128
15
17
19

138
63

Binary

10000000
00001101
00010001
00010011
10001010
00111111

Fraction

1.0000000
1.1010000
1.0001000
1.0011000
1.0001010
1.1111100

Exponent

(0, N N N Y IEN

3-bits

Rounding 1.BBGRXXX

Guard bit: LSB of result \/ ;

Sticky bit: OR of remaining bits
Round bit: 15 bit removed

m Round up conditions
®" Round =1, Sticky=1=>0.5
® Guard =1, Round =1, Sticky = 0 = Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
15 1.1010000 100 N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

Postnormalize

m Issue
® Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 / 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 / 134
63 10.000 5 1.000/6 o4

FP Multiplication

m(—1)I M1 2F1 x (=1)2 M2 2F2
m Exact Result: (-1)* M 2°F

= Sign s: s1”/s2

= Significand M: M1x M2

" Exponent E: E1+E2
m Fixing

= |f M 2 2, shift M right, increment E
" |f E out of range, overflow
" Round M to fit frac precision

m Implementation

= Biggest chore is multiplying significands

12

Floating Point Addition

m (-1 M1 2F1 + (-1)2 M2 2F2

"Assume E1 > E2

m Exact Result: (-1)* M 2°F

=Sign s, significand M: 4

= Result of signed align & add
"Exponent E: E1

m Fixing
=|lf M > 2, shift M right, increment E

f—E1-E2 —y

(=1)s M1

(-1)2 M2

(1M

=if M < 1, shift M left k positions, decrement E by k

=Qverflow if E out of range
="Round M to fit frac precision

13

Today: Floating Point

m |[EEE Rounding modes
m Conversion process

m Addition, multiplication
m Floating pointin C

16

Floating Point in C

m C Guarantees Two Levels
"float single precision
"double double precision

m Conversions/Casting
mCasting between int, float, and double changes bit representation
" double/float 2 int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
" int 2 double
= Exact conversion, as long as int has £ 53 bit word size
"int 2> float
= Will round according to rounding mode

17

Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true

- X == (1nt)(float) x

- X == (int)(double) x
e - f == (float)(double) f
Float = . + d == (float) ¢
double d = ..; ©F == -0

-« 2/3 == 2/3.0
Assume neither +d <0.0 = ((d*2) < 0.0)
d nor £ is NaN - d > f = -f> -d

- d *d>=0.0
- (d+f)-d ==

18

