Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

4 : Integer Arithmetic
March 7, 2013

Today: Integer arithmetic

m Data type ranges

m Addition (and subtraction)
= Qverflow & modularity
= Unsigned
= Signed (Two’s complement)
m Multiplication
= Unsigned
= Signed (Two’s complement)

m Division

Data Representations (byte count)

char

short

int

long

long long
float
double
long double

pointer

C Data Type Typical 32-bit Intel IA32 x86-64
1 1 1

&~ oo B BB DD
&~ ©o oo B DD

8 8
10/12 10/16
4 8

&~ ©0 © H oo = BB DD

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Sums require more digits

than the inputs:
9+9 =18

99+99 =198

m Same issue occurs when adding

binary numbers

Today: Integer arithmetic

m Data type ranges

m Addition (and subtraction)
= Qverflow & modularity
= Unsigned
= Signed (Two’s complement)
m Multiplication
= Unsigned
= Signed (Two’s complement)

m Division

Binary addition

m Start with 4 basic cases:
= 0+0
" 0+1
= 1+0
= 1+1

m These 4 cases form the ‘truth table’

= Similar to the boolean truth tables from yesterday

m May resultin carry out (1+1)!
= Add another output to truth table

Unsigned Addition

Operands: w bits U so e

+ VvV o0 0
True Sum: w+1 bits U+ —
Discard Carry: w bits ~ UAdd, (u , V) v oo

m Standard Addition Function
" |gnores carry output

m Implements Modular Arithmetic
s = UAdd,(u, V) = u+v mod2%

U+ v u+v<?2"

u+v-=-2" u+v=2"

UAdd,,(u,v) = {

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bitintegers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

® Forms planar surface

Binary addition

m Start with 4 basic cases:
= 0+0
" 0+1
= 1+0
= 1+1

m Basic table may result in carry out (1+1)
= Refine table with 3 inputs: A, B, C
= 2outputs: R, C

Visualizing Unsigned Addition

m Wraps Around Overflow
\

" |f true sum = 2%

UAdd,(u, v)

= At most once

True Sum

wHlT
2 Overflow

2 _\-I

0

Modular Sum

10

Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

~x + 1 == -x

m Complement
® QObservation: ~x + x == 1111..111 == -1

x |110]0]1{1]1{0]1
+ ~x |0{1]1]0]0]0f1]0

-1 1433373313

12

Complement & Increment Examples

x =15213
Decimal| Hex Binary

X 15213| 3B 6D| 00111011 01101101

~X -15214| C4 92(11000100 10010010

~x+1 | -15213| C4 93| 11000100 10010011

y -15213| C4 93| 11000100 10010011
x=0

Decimal | Hex Binary

0 0| 00 00| 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 00000000

13

Two’s Complement Addition

Operands: w bits u 22
+ Vv o000

True Sum: w+1 bits
u-+v XK
Discard Carry: w bits TAdd (u ,v) XX

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v

= Will give s ==

14

TAdd Overflow

m Functionality
" True sum requires w+1
bits
= Drop off MSB

" Treat remaining bits as
2’s comp. integer

0111..

0 100...

0 000...

1011..

1 000...

True Sum
w_1 -
PosOver
2W—1 - -
O — ——
_zw—l_l -+ 4L
1 NegOver

TAdd Result

011..1

000...0

100...0

15

Visualizing 2’s Complement Addition

NegOver

m Values

= 4-bit two’s comp.
= Range from -8 to +7
m Wraps Around

= |f sum = 2w
= Becomes negative
= At most once

" |f sum < -2w-1
= Becomes positive
= At most once

u 6 - PosOver

16

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u,v) |
" True sum requires w+1 bits '
= Drop off MSB V> 0 \
" Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

(u+v+ ow u+v <TMin,, (NegOver)
TAdd,,(u,v) = qu+v TMin,, <su+v=<TMax,,

u+v-— 2w I'Max,, <u+V (posOver)

17

Subtraction

m Similar to decimal
= A-Bisthe same as
= A+ (-B)

m Use addition and 2’s complement
= Take 2’s complement of subtrahend

= (the number being subtracted)
" Then add

18

Overflow

m Detect using

= QOperation (add or subtract)

= Sign of inputs (A and B)
= Sign of output (R)

Op | SignofA | SignofB | OverflowifR | Expected
+ >0 >0 <0 >0

+

>0 <0
<0 >0
>0 <0

20

Today: Integer arithmetic

m Data type ranges

m Addition (and subtraction)
= Qverflow & modularity
= Unsigned
= Signed (Two’s complement)
m Multiplication
= Unsigned
= Signed (Two’s complement)

m Division

21

Multiplication

m Computing Exact Product of w-bit numbers x, y

= Either signed or unsigned

m Ranges
" Unsigned:0<x*y<(2w—-1)2 = 22w —-2w*l + 1
= Up to 2w bits
= Two’s complement min: x * y > (—=2w1)*(2w1-1) = —-22w=24 w1
= Up to 2w-1 bits
"= Two’s complement max: x * y < (—2w1) 2 = 22w
= Up to 2w bits, but only for (TMin,,)?
m Maintaining Exact Results
= Would need to keep expanding word size with each product computed

"= Done in software by “arbitrary precision” arithmetic packages

22

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bitsit = V 000

UMult (u , v)

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic

UMult (u,v)= u -v mod 2%

23

Signed Multiplication in C

Operands: w bits

True Product: 2*w bitsit = V ° 00

TMult, (u ,v)

Discard w bits: w bits

m Standard Multiplication Function
" |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

27

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

I/t o0

Operands: w bits

* 2k O 000 O 1

True Product: w+k bits U 2k 000

] i | «»] i) | @)

Discard k bits: w bits UMult, (u , 2%) vor

TMult, (u , 2%)
m Examples

" u << 3 == u * 8
" u<< 5 -u<x<3 == u * 24
= Most machines shift and add faster than multiply
= Compiler generates this automatically (strength reduction)

28

Compiled Multiplication Code

C Function

int mull2 (int x)
{

return x*12;

}

Compiled Arithmetic Operations Explanation
leal (%eax, %eax,2), %eax t <- x+x*2
sall $2, %eax return t << 2;

m C compiler automatically generates shift/add code when
multiplying by constant

29

Today: Integer arithmetic

m Data type ranges

m Addition (and subtraction)
= Qverflow & modularity
= Unsigned
= Signed (Two’s complement)
m Multiplication
= Unsigned
= Signed (Two’s complement)

m Division

30

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
" u >> kgives |u / 2]
= Uses logical shift

k
o 4 u 2ee 2ee Binary Point
erands:
p / 2k O Y O 1 O 000
Division: w/2k QL e 1010
Result: | w/2k| 0L > 1010
Division [Computed Hex Binary
X 15213 15213 3B 6D| 00111011 01101101
x >> 1 7606.5 7606 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

3

Compiled Unsigned Division Code

C Function

unsigned udiv8 (unsigned x)

{

return x/8;

}

Compiled Arithmetic Operations

Explanation

shrl $3, %eax

m Uses logical shift for unsigned

m For Java Users
= Logical shift written as >>>

Logical shift
return x >> 3;

32

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
" x >> kgives | x / 2]

= Uses arithmetic shift

"= Rounds wrong direction whenu < 0

k
X 2ee 2ee Binary Point
Operands:
l 2k oo |01110] ooe 0
Division: X / 2k YY) YY) (YY)
Result: RoundDown(x / 2K) coo coo
Division [Computed Hex Binary
Yy -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 [-59.4257813 -60 FF C4| 11111111 11000100

33

Correcting negative shift divide

m Need to adjust result when shifting negative number

= Add 1 to result

k
X 2ee 2ee Binary Point
Operands:
l 2k O eee [01110] eee |00
Division: x / 2k LU Ll I/ L1
Result: RoundDown(x / 2¥) eoe voo
Division Computed | +1if<0
y -15213 -15213 | No change
y > 1 -7606.5 -7607 -7606
y >> 4 -950.8125 -951 -950
y >> 8 |-59.4257813 -60 -59

34

Compiled Signed Division Code

C Function

{

}

int idiv8 (int x)

return x/8;

Compiled Arithmetic Operations

Js L4
L3:
sarl $3,
ret
L4:
addl $7,
jmp L3

testl %eax, %eax

$eax

$eax

Explanation

if x < 0

x += 7;
Arithmetic shift
return x >> 3;

m Uses arithmetic shift for int

m For Java Users
= Arith. shift written as >>

37

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2w
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2w

m Multiplication:

" Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

38

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

= Right shift
= Unsigned: logical shift, div (division + round to zero) by 2k
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

39

Why Should | Use Unsignhed?

m Don’t Use Just Because Number Nonnegative
= Easy to make mistakes

unsigned 1i;
for (i = cnt-2; i >= 0; i--)
af[i] += a[i+l1];
= Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

m Do Use When Performing Modular Arithmetic

" Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets
= Logical right shift, no sign extension

42

Weekly review

m Monday

= System overview
m Tuesday

= Bits and Bytes
m Wednesday

= Boolean logic, signed numbers

m Today

" Binary arithmetic

43

