CSSE132 Introduction to Computer Systems

4 : Integer Arithmetic

March 7, 2013

Today: Integer arithmetic

- Data type ranges
- Addition (and subtraction)
 - Overflow & modularity
 - Unsigned
 - Signed (Two's complement)
- Multiplication
 - Unsigned
 - Signed (Two's complement)
- Division

Data Representations (byte count)

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Values for Different Word Sizes

	W				
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

Sums require more digits than the inputs:

$$9+9 = 18$$

$$99+99 = 198$$

Same issue occurs when adding binary numbers

Today: Integer arithmetic

- Data type ranges
- Addition (and subtraction)
 - Overflow & modularity
 - Unsigned
 - Signed (Two's complement)
- Multiplication
 - Unsigned
 - Signed (Two's complement)
- Division

Binary addition

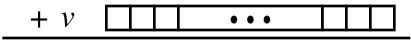
- Start with 4 basic cases:
 - -0+0
 - **0** + 1
 - **1** + 0
 - **1** + 1
- These 4 cases form the 'truth table'
 - Similar to the boolean truth tables from yesterday
- May result in carry out (1+1)!
 - Add another output to truth table

Unsigned Addition

Operands: w bits

u

True Sum: w+1 bits



Discard Carry:
$$w$$
 bits $UAdd_w(u, v)$

u + v

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

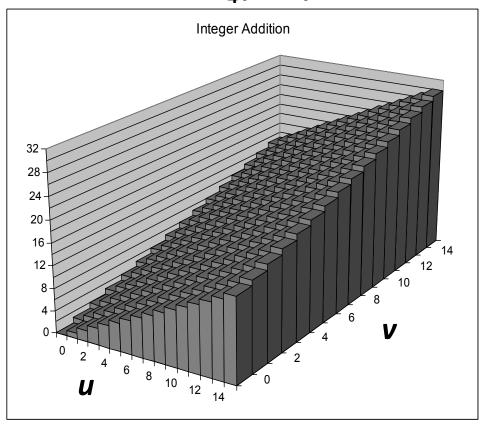
$$UAdd_w(u,v) = \begin{cases} u+v & u+v < 2^w \\ u+v-2^w & u+v \ge 2^w \end{cases}$$

Visualizing (Mathematical) Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$



Binary addition

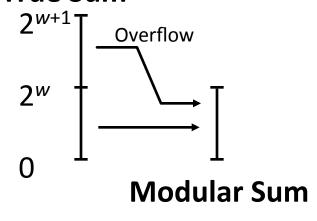
- Start with 4 basic cases:
 - -0+0
 - **0** + 1
 - **1** + 0
 - **1** + 1
- Basic table may result in carry out (1+1)
 - Refine table with 3 inputs: A, B, C
 - 2 outputs: R, C

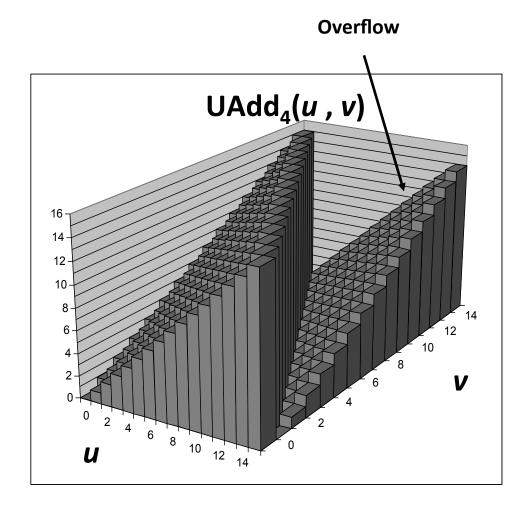
Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum





Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

Observation: $\sim x + x == 1111...111 == -1$ x = 10011101 $+ \sim x = 01100010$ -1 = 11111111

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex Binary	
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

$$x = 0$$

	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

Two's Complement Addition

■ TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

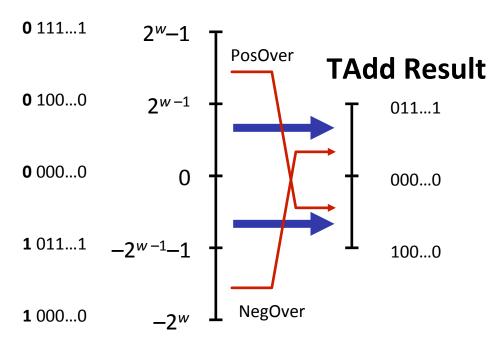
Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum



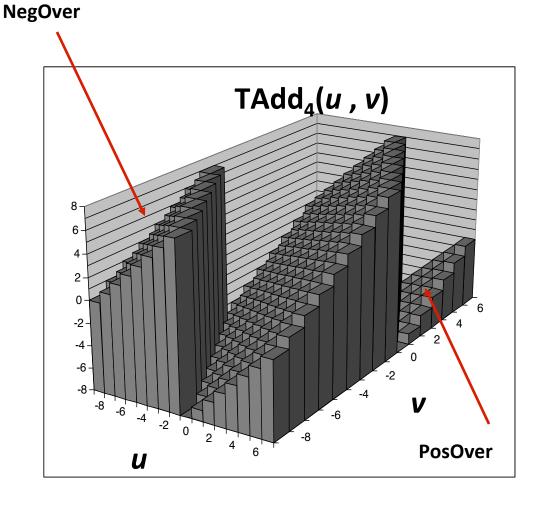
Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

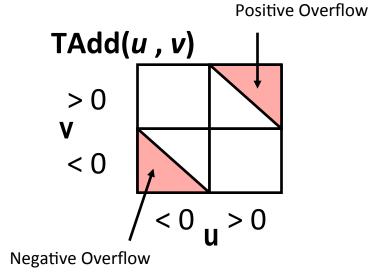
- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once



Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Subtraction

- Similar to decimal
 - A B is the same as
 - A + (-B)
- Use addition and 2's complement
 - Take 2's complement of subtrahend
 - (the number being subtracted)
 - Then add

Overflow

Detect using

- Operation (add or subtract)
- Sign of inputs (A and B)
- Sign of output (R)

Ор	Sign of A	Sign of B	Overflow if R	Expected
+	≥0	≥0	<0	≥0
+	<0	<0	≥0	<0
-	≥0	<0	<0	>0
-	<0	≥0	≥0	<0

Today: Integer arithmetic

- Data type ranges
- Addition (and subtraction)
 - Overflow & modularity
 - Unsigned
 - Signed (Two's complement)

Multiplication

- Unsigned
- Signed (Two's complement)
- Division

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned

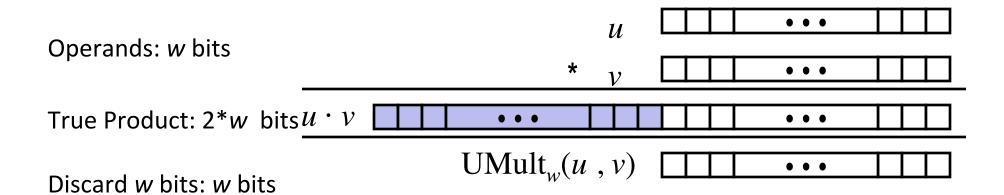
Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*−1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (*TMin_w*)²

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

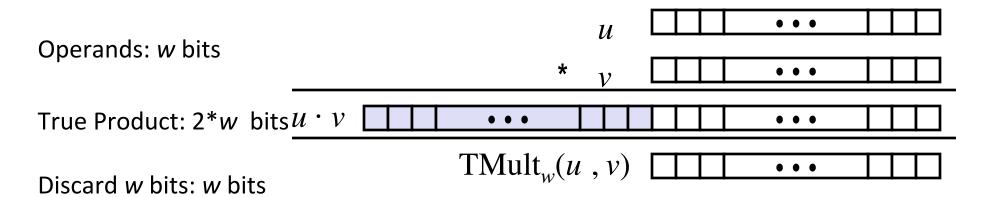
Unsigned Multiplication in C



- Standard Multiplication Function
 - Ignores high order w bits
- **Implements Modular Arithmetic**

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed Multiplication in C



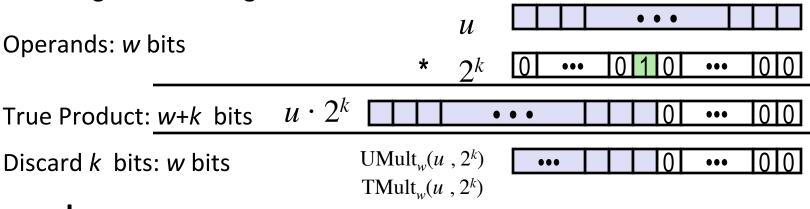
Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned



k

Examples

- u << 3 == u * 8
- u << 5 u << 3 == u * 24</pre>
- Most machines shift and add faster than multiply
 - Compiler generates this automatically (strength reduction)

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Today: Integer arithmetic

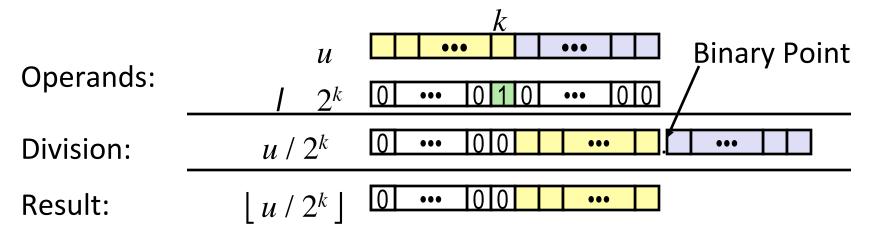
- Data type ranges
- Addition (and subtraction)
 - Overflow & modularity
 - Unsigned
 - Signed (Two's complement)

Multiplication

- Unsigned
- Signed (Two's complement)
- Division

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $[\mathbf{u} / 2^k]$
 - Uses logical shift



	Division	Computed	Hex	Binary	
x	15213	15213	3B 6D	00111011 01101101	
x >> 1	7606.5	7606	1D B6	00011101 10110110	
x >> 4	950.8125	950	03 B6	00000011 10110110	
x >> 8	59.4257813	59	00 3B	00000000 00111011	

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

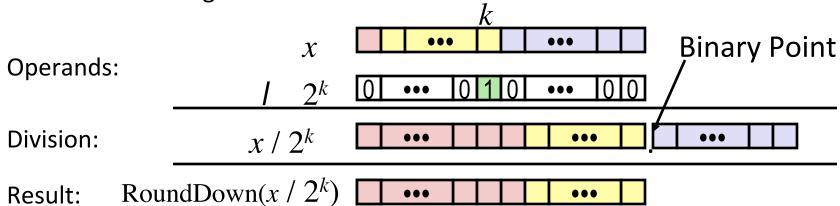
Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

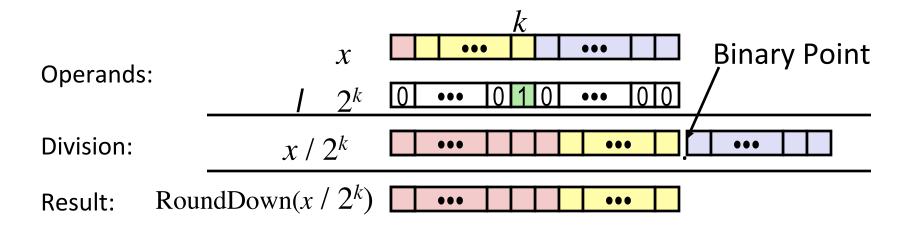
- Quotient of Signed by Power of 2
 - $x \gg k$ gives $[x / 2^k]$
 - Uses arithmetic shift
 - Rounds wrong direction when **u** < **0**



	Division	Computed	Hex	Binary	
У	-15213	-15213	C4 93	11000100 10010011	
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001	
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001	
y >> 8	-59.4257813	-60	FF C4	1111111 11000100	

Correcting negative shift divide

- Need to adjust result when shifting negative number
 - Add 1 to result



	Division	Computed	+1 if < 0
У	-15213	-15213	No change
y >> 1	-7606.5	-7607	-7606
y >> 4	-950.8125	-951	-950
y >> 8	-59.4257813	-60	-59

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
test1 %eax, %eax
js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Why Should I Use Unsigned?

- Don't Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Weekly review

Monday

System overview

Tuesday

Bits and Bytes

Wednesday

Boolean logic, signed numbers

Today

Binary arithmetic