Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

3 : Boolean logic and integers
March 6, 2013

Today: Boolean logic and Integers

m Review hex conversion

m Boolean algebra
= Bit vectors
® QOperationsin C: bitwise vs. logical
= Shift operations

m Signed numbers
= Review unsigned and signed encoding
= Revisit arithmetic shift
m Signed conversion issues
= Signed and unsigned conversion
= C promotion
" Truncation and type casting

Hexadecimal

m Byte = 8 bits
= Hexadecimal 0016 to FFis
= Base 16 number representation
= Use characters ‘0’ to ‘9" and ‘A’ to ‘F
= Write FA1D37B16 in C as
— OxFA1D378B
— Oxfald37b
" Hex to decimal
= Repeatedly multiply by 16
= Decimal to hex
= Repeatedly divide by 16 (factoring)

A\

&
\b@“. 0@0\66\0
0 0 10000
1 1 10001
2 2 1 0010
3 3 [0011
4 4 0100
5 5 0101
6 o 10110
]] 0111
8 8 1000
9 9 11001
A [101]11010
B |11 (1011
C 11211100
D 11311101
E (1411110
FF 11511111

Today: Boolean logic and Integers

m Review hex conversion

m Boolean algebra
= Bit vectors
® QOperationsin C: bitwise vs. logical
= Shift operations

m Signed numbers
= Review unsigned and signed encoding
= Revisit arithmetic shift
m Signed conversion issues
= Signed and unsigned conversion
= C promotion
" Truncation and type casting

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
O0(0 O O0(0 1
110 1 111 1
Not Exclusive-Or (Xor)
m “A=1when A=0 s AAB =1 when either A=1 or B=1, but not both
~| AO 1
O] O(0 1
110 111 0

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001

& 01010101 | 01010101 ~ 01010101

01000001 01111101 00111100

~ 01010101
10101010

m All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}
= aj=1ifj €A

01101001 {0,3,5,6}
76543210

01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bit-Level Operations in C

m Operations &, |, ~, A Availablein C

= Apply to any “integral” data type
« long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~Px41 = OxBE
= ~01000001, —» 10111110;
= ~Px00 = OxFF
= ~00000000; - 11111111;
= Px69 & 0Ox55 = 0x41
» 01101001; & 01010101, —» 01000001:
= Ox69 | Ox55 = Ox7D

- 01101001; | 01010101, = 01111101>

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &, |1, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1

= Early termination

m Examples (char data type)
= 10x41 - 0x00

10x00 = 0x01

110x41 = 0x01

0x09 && Ox55 = 0x01
0xe9 || Ox55 = 0x01

p && *p (avoids null pointer access)

Shift Operations

m Left Shift: X << Yy
= Shift bit-vector X left y positions
— Throw away extra bits on left
= Fill with @’s on right
m Right Shift: X >> ¥y
= Shift bit-vector X right y positions
= Throw away extra bits on right
= |ogical shift
= Fill with @’s on left
= Arithmetic shift
= Replicate most significant bit

m Undefined Behavior

= Shift amount < 0 or = word size

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log. >> 2

00101000

Arith. >> 2

11101000

1"

Today: Boolean logic and Integers

m Review hex conversion

m Boolean algebra
= Bit vectors
® QOperationsin C: bitwise vs. logical
= Shift operations

m Signed numbers
= Review unsigned and signed encoding
= Revisit arithmetic shift
m Signed conversion issues
= Signed and unsigned conversion
= C promotion
" Truncation and type casting

Encoding Integers

Unsigned 1
B2U(X) = Y x-2'
=0

1=

Two’s Complement

B2T(X) = -x,,2" "+

w=2

x; -2

l
\i=0

short int x = 15213;
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

m Sign Bit

" For 2’s complement, most significant bit indicates sign

= 0 for nonnegative

= 1 for negative

13

Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768
Sum 15213 -15213

14

Numeric Ranges

= Unsigned Values m Two’s Complement Values

| 1 -
U’(‘)”O’g ; 0 = TMin = —2w!
100...0
[w __
UMax 2" " TMax = 2%i-1
111...1 011..1
m Other Values
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00 10000000 0000O0OOO
-1 -1 FF FF| 11111111 11111111
0 0 00 00 00000000 00OOOOOOO

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Observations

|TMin | = TMax+1
= Asymmetric range
UMax 2* TMax +1

m CProgramming
= Hinclude <limits.h>
= Declares constants, e.g.,
= ULONG_MAX
= LONG_MAX
= LONG_MIN
= Values platform specific

Unsigned & Signed Numeric Values

X B2U(X B2T(X
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 —6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 —2
1111 15 -1

m Equivalence
= Same encodings for nonnegative
values
m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding
m => Can Invert Mappings
= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

17

Arithmetic Right Shift

m Right Shift: X >> vy
= Shift bit-vector X right y positions
= Throw away extra bits on right
" |ogical shift
= Fill with @’s on left
= Arithmetic shift
= Replicate most significant bit on right

m Replicates MSB to preserve sign

= |f x>0, same as logical shift
" |f x <0, extend sign bit
1010 >> 1101 (-6 >>-3)

18

Today: Boolean logic and Integers

m Review hex conversion

m Boolean algebra
= Bit vectors
® QOperationsin C: bitwise vs. logical
= Shift operations

m Signed numbers
= Review unsigned and signed encoding
= Revisit arithmetic shift
m Signed conversion issues
= Signed and unsigned conversion
= C promotion
" Truncation and type casting

Mapping Between Signhed & Unsigned

Two’s Complement

X

Unsigned
Ux

> T2B

T2U

—

B2U

X

Maintain Same Bit Pattern

U2T

*LU2B

X

> B2T

Maintain Same Bit Pattern

Unsigned

> UX

Two’s Complement

> X

m Mappings between unsigned and two’s complement numbers:

keep bit representations and reinterpret

20

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

Mapping Signed <= Unsigned

Unsigned

o

0111

1000

v

1001

1010

1011

1100

1101

1110

1111

S

5| B

W (I (LI|BITWIN K

=
o

-
-

=
N

=
w

=
(1~

=
8]

21

Mapping Signed <= Unsigned

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

I.

O |0 ([J|x(LGT|BdW|IN|K

Unsigned

(@

[
o

=
=

=
N

[
w

=
(1Y

=
(6}

22

Relation between Sighed & Unsigned

Two’s Complement - Unsigned
X *| T2B 7’ B2U > UX

Maintain Same Bit Pattern

w—1 0
ux [+1+1+ ¢oe ++]+
x [I+I+ ¢oe ++]+
T X x=0
ux = W
{x+2 x<0
Large negative weight

becomes
Large positive weight

23

Conversion Visualized

m 2’s Comp. — Unsigned
= QOrdering Inversion ® UMax
® UMax—-1

= Negative — Big Positive

F: TMax +1 | unsigned
] TMax Range

_TMax ®

2’s Complement ® @
Range _2 .J/ 0 -

24

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

25

Casting Surprises (promotion)

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

® Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648 ,

m Constant,
0
-1
-1
2147483647
2147483647U
-1
(unsigned)-1
2147483647
2147483647

Constant,

ou

0

ou
-2147483647-1
-2147483647-1

-2

-2

21474836438U
(int) 2147483648U

Relation

<

v A V V A V V

TMAX = 2,147,483,647

Evaluation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned

signed

26

Summary

Casting Signed € Unsigned: Basic Rules

Bit pattern is maintained
But reinterpreted

Can have unexpected effects: adding or subtracting 2%

Expression containing signed and unsigned int

" intiscasttounsigned!!

30

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

l —
B X = Xpyq e Xpye1r Xpe1 2 Xy 10000 Xg

k copies of MSB < w
o 00

X, o0 0 o0 o0

— k >< w

3

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
vy -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

32

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added

Signed: sign extension
Both yield expected result

m Truncating (e.g., unsigned to unsigned short)

Unsigned/signed: bits are truncated

Result reinterpreted

Unsigned: mod operation

Signed: similar to mod

For small numbers yields expected behaviour

33

