Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

2 : Bits and bytes
March 5, 2013

Today: Bits and Bytes

m How is Linux going?
m Information in bits
" bits and Bytes
= Hexadecimal

= printf conversions
m Memory
= Words

" Machine addressing
= Data sizes

m Two’s complement

Binary and bits

m Binary is a 2 digit numbering system (base 2)
m Decimal is a 10 digit numbering system (base 10)
m Hexadecimal is a 16 digit numbering system (base 16)

m Binary numbering is the basis for computing
= Easy to understand (switches on or off)
= Represented in many domains
= On/Off
= 1/0
= High voltage / low voltage
= |ess signal interpretation error
= Simple physical representation

Binary Representations

m Voltage representation

3.3V
2.8V

0.5V
0.0V

Bits and Bytes

m Bit : single binary number
= Either 1/0, On/Off, ...
= Not particularly useful by itself
= Can be combined in series...
= ..with defined representation (encoding)

m Byte : 8 bits
= Artifact of historical hardware design
= Neither better nor worse than 7 bits or 9 bits
= Just ‘happened’

Bytes

m Have a bounded number of unique encodings
= 8 value places
= 2 possible values for each place

m Consider 1 bit
= 1 value place, 2 possible values
= 2 unique encodings : 0, 1
m Consider 2 bits
= 2 values places, 2 possible values
= 4 unique encodings : 00, 01, 10, 11

Bytes

m In general
= nvalue places, 2 possible values
= 2" possible unique encodings

m For a single byte
= 8 value places, 2 possible values
= 28 encodings (256)

Encoding numbers in binary

m Similar to decimal, least-significant digit on the right
= 00, represents 0,
" 01, represents 1,
= 10, represents 2,
= 11, represents 3,
= andsoon...

m Convenient to represent place values as

0 0 1 0 0 1 0 1 bit
128 64 32 16 8 4 2 1 | Place value
27 26 20 24 23 2? 2! 20| 2"value
=32+4+1=37

= We will see another encoding/context by the end of this lecture

Byte representation practice

0 0 0 0 1 1 1
128 64 32 16 8 4 2
0 1 0 0 1 0 0
128 64 32 16 8 4 2
0 1 1 0 0 1 0

128 64 32 16 8 4 2

Encoding Byte Values as Hexadecimal

® 3
m Byte = 8 bits ot oec’,\‘;\oo‘
= Binary 000000002t0 11111111, 010 10000
" Decimal: 010 to 25510 1 |1 10001
_ 2 [2 10010
= Hexadecimal 0016 to FF1s 3 13 10011
. : 4 4 0100
Base 16 number representation = 5 0101
» Use characters ‘O’ to ‘9’ and ‘A’ to ‘F’ 6 | 6 10110
- Write FA1D37B1s in C as R B
— OxFA1D37B 0 1 0 | 1001
A |110[1010
— Oxfald37b B |11]11011
C (1211100
D |13 11101
E 11411110
FFPol1I5[1111

Encoding Byte Values as Hexadecimal

® 3
m Binary hex conversion ot oec‘,\‘;\oo‘
= Binary to hex 0 T0 10000
= Partition bits into groups of 4 1 11 /0001
.. 2 2 |1 0010
= From least-sig side 313 | 0011
Convert each i igi 4 14 10100
. group into hex digit =T Tol01
= Hex to binary 6 | 6 10110
= Convert each hex digit to 4 bits ; ; %éé
9 19 11001
. . . A 11011010
= 2 hex digits represent 1 byte (8 bits) B |11] 1011
C 1211100
D [13]1101
E 11411110
F 1511111

1"

Hexadecimal conversion

m Base 16, so each place value is 16 times larger
m Multiply by place value to convert to decimal

0 1 0 1T 0 0 1

4096 236 16 1 4096 236 16

=1*16%+ 0*16 + 1*1 = 257

0 0 2 A 0 1 4

4096 236 16 1 4096 236 16

=2*16+ A*1=32+10=42

12

Hexadecimal conversion

Convert decimal to hex by repeated division (factoring)

523, 4,004,

523 =32*16+11: B 4004 = 250*16 + 4 : 4
32=2%16+0:0 250 = 15%16 + 10 : A
2=0%16+2:2 15=0%16+15: F

0 2 0 B 0 F A 4

4096 236 16 1 4096 236 16

14

printf() conversion

m printf() can easily convert hexadecimal and decimal

%d
%uU
%X

%X

: signed decimal integer (also %i)
: unsigned decimal integer

: lowercase hexadecimal integer
. uppercase hexadecimal integer

15

Today: Bits, Bytes, and Integers

m How is Linux going?
m Information in bits
" bits and Bytes
= Hexadecimal

= printf conversions
m Memory
= Words

" Machine addressing
= Data sizes

m Two’s complement

Memory

m Storage bank for data
= Byte is the smallest unit of storage
= Each byte has an ‘address’
= Addresses start at 0 and go up

m Memory abstractions are hidden
= (OS handles some memory abstractions (virtual address space)
= Hardware handles other (caching hierarchy)

17

Byte-Oriented Memory Organization

m Programs Refer to Virtual Addresses
= Conceptually very large array of bytes
= Actually implemented with hierarchy of different memory types
= System provides address space private to particular “process”
= Program being executed
= Program can clobber its own data, but not that of others

m Compiler + Run-Time System Control Allocation

= Where different program objects should be stored
= All allocation within single virtual address space

18

Machine Words

m Machine Has “Word Size”

= Nominal size of integer-valued data

= Including addresses
" Most current phones use 32 bits (4 bytes) words

= Limits addresses to 4GB

= Becoming too small for memory-intensive applications
= Most current PCs use 64 bits (8 bytes) words

= Potential address space = 1.8 X 10%° bytes

= x86-64 machines support 48-bit addresses: 256 Terabytes
"= Machines support multiple data formats

= Fractions or multiples of word size

= Always integral number of bytes

19

Word-Oriented Memory Organization

32-bit 64-bit

. Bytes Addr.
m Addresses Specify Byte Words Words —Y
Locations 0000
]) Addr

= Address of first byte in word = 0001
: : 0000 0002

= Addresses of successive words differ Addr
by 4 (32-bit) or 8 (64-bit) = 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

20

Data Representations (byte count)

char

short

int

long

long long
float
double
long double

pointer

C Data Type Typical 32-bit Intel IA32 x86-64
1 1 1

&~ oo B BB DD
&~ ©o oo B DD

8 8
10/12 10/16
4 8

&~ ©0 © H oo = BB DD

21

Byte Ordering

m How should bytes within a multi-byte word be ordered in
memory?

m Conventions
" Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM phones
= Least significant byte has lowest address
= Bi-Endian: General ARM, general PPC, Itanium
= Can switch between endianness

= Endianness is arbitrary!
= No hardware reason that one is better!

22

Byte Ordering Example

m Big Endian

= |Least significant byte has highest address
m Little Endian

= |Least significant byte has lowest address
m Example

= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103

01 23 45 6’/

Little Endian 0x100 0x101 0x102 0x103

6’/ 45 23 01

23

Decimal: 15213

Representing Integers [Binary: 0011 1011 0110 1101

int A = 15213;

I1A32, x86-64

Sun

int B = -15213;

1A32, x86-64

Sun

Hex: 3 B 6 D

long 1nt C = 15213;
IA32 x86-64 Sun

6D
3B
00
00

T~

Two’s complement representation

(Covered later)

27

Representing Pointers

int B = -15213;
int *P = &B;
Sun I1A32 x86-64
EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
/F
00
00

Different compilers & machines assign different locations to objects

Representing Strings

char S[6] = "18243";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format Linux/Alpha Sun
= Standard 7-bit encoding of character set 31 | | 31
= Character “0” has code 0x30 38 |+ »[38
— Digiti has code 0x30+i 32 | o 32
= String should be null-terminated 34 | SEEY)
= Final character=0 33 | o 33
m Compatibility 00 | | 00

= Byte ordering not an issue

Today: Bits, Bytes, and Integers

m How is Linux going?
m Information in bits
" bits and Bytes
= Hexadecimal

= printf conversions
m Memory
= Words

" Machine addressing
= Data sizes

m Two’s complement

Signed numbers preview

m We will use ‘Two’s complement’
= Most significant bit represents negative value

m So, for 4 bits

1 1 1 1
-8 4 2 1
=-8+4+2+1=-1

3

Two’s complement

m Full bytes

1 0 0 0

-128 64 32 16

-128+8+1=-119

1 1 0 1

-128 64 32 16

-128+64+16+4+2=-42

32

Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768
Sum 15213 -15213

34

