
1

CSSE132	
Introduc0on	 to	 Computer	 Systems	

11	 :	 Basic	 computa.onal	 structures	
March	 20,	 2013	

2

Today:	 Basic	 computa0onal	 structures	
¢  Helpful	 structures	

§  Decoder/encoder	
§  Mul.plexor/demul.plexor	
§  Sign	 extender	

¢  ALU	
§  ALU	 control	
§  Zero	 detector	
§  Set	 less	 than	

3

Decoder/encoder	
¢  Outputs	 unique	 signal	 based	 on	 input	

§  Inputs:	 state	 of	 systems	
§  Output:	 unique	 representa.ve	 code	
§  2	 inputs	 =	 22	 outputs	

¢  Encoder	 reverses	 the	 process	

154 Computer Organization and Design Fundamentals

A B C EN
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Figure 8-21 Truth Table to Enable a Device for A=1, B=1, & C=0

Decoder circuits are a group of enable circuits that have an
individual output that satisfies each row of the truth table. In other
words, a decoder has a unique output for each combination of ones and
zeros possible at its inputs.

For example, a 2-input decoder circuit with inputs A and B can have
an output that is 1 only when A=0 and B=0, an output that is 1 only
when A=0 and B=1, an output that is 1 only when A=1 and B=0, and
an output that is 1 only when A=1 and B=1. The boolean expressions
that satisfy this decoder circuit are:
 _ _ _ _
EN0 = A·B EN1 = A·B EN2 = A·B EN3 = A·B

This two-input circuit is called a 1-of-4 decoder due to the fact that
exactly one of its four outputs will be enabled at any one time. A
change at any of the inputs will change which output is enabled, but
never change the fact that only one is enabled. As for the logic circuit,
it has four AND gates, one satisfying each of the above boolean
expressions. Figure 8-22 presents this digital circuit.

Figure 8-22 Digital Circuit for a 1-of-4 Decoder

A

B

EN0

EN1

EN2

EN3

4

Mul0plexor	
¢  Select	 single	 data	 stream	 from	 mul0ple	 channels	

§  Mul.ple	 data	 inputs	
§  Single	 data	 output	
§  Control	 S	 selects	 single	 data	 stream	

156 Computer Organization and Design Fundamentals

connected to a single data output. With n binary "select lines," one of 2n
data inputs can be connected to the output. Figure 8-25 presents a block
diagram of a multiplexer with three select lines, S2, S1, and S0, and
eight data lines, D0 through D7.

Figure 8-25 Block Diagram of an Eight Channel Multiplexer

A multiplexer acts like a television channel selector. All of the
stations are broadcast constantly to the television's input, but only the
channel that has been selected is displayed. As for the eight-channel
multiplexer in Figure 8-25, its operation can be described with the truth
table shown in Figure 8-26.

S2 S1 S0 Y
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

Figure 8-26 Truth Table for an Eight Channel Multiplexer

For example, if the selector inputs are set to S2 = 0, S1 = 1, and
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y
will output a 0.

The number of data inputs depends on the number of selector inputs.
For example, if there is only one selector line, S0, then there can only
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the

 S2 S1 S0
D0
D1
D2
D3 Y
D4
D5
D6
D7

Output

156 Computer Organization and Design Fundamentals

connected to a single data output. With n binary "select lines," one of 2n
data inputs can be connected to the output. Figure 8-25 presents a block
diagram of a multiplexer with three select lines, S2, S1, and S0, and
eight data lines, D0 through D7.

Figure 8-25 Block Diagram of an Eight Channel Multiplexer

A multiplexer acts like a television channel selector. All of the
stations are broadcast constantly to the television's input, but only the
channel that has been selected is displayed. As for the eight-channel
multiplexer in Figure 8-25, its operation can be described with the truth
table shown in Figure 8-26.

S2 S1 S0 Y
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

Figure 8-26 Truth Table for an Eight Channel Multiplexer

For example, if the selector inputs are set to S2 = 0, S1 = 1, and
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y
will output a 0.

The number of data inputs depends on the number of selector inputs.
For example, if there is only one selector line, S0, then there can only
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the

 S2 S1 S0
D0
D1
D2
D3 Y
D4
D5
D6
D7

Output

5

Demul0plexor	
¢  Outputs	 data	 to	 one	 of	 mul0ple	 data	 channels	

§  Single	 data	 input	
§  Mul.ple	 data	 outputs	
§  Control	 S	 selects	 data	 output	

158 Computer Organization and Design Fundamentals

multiple printers connected to a computer. A document can only be

printed to one of the printers, so the computer selects one out of the

group of printers to which it will send its output.

The design of a demultiplexer is much like the design of a decoder.

The decoder selected one of many outputs to which it would send a

zero. The difference is that the demultiplexer sends data to that output

rather than a zero.

The circuit of a demultiplexer is based on the non-active-low

decoder where each output is connected to an AND gate. An input is

added to each of the AND gates that will contain the demultiplexer's

data input. If the data input equals one, then the output of the AND gate

that is selected by the selector inputs will be a one. If the data input

equals zero, then the output of the selected AND gate will be zero.

Meanwhile, all of the other AND gates output a zero, i.e., no data is

passed to them. Figure 8-27 presents a demultiplexer circuit with two

selector inputs.

Figure 8-27 Logic Circuit for a 1-Line-to-4-Line Demultiplexer

In effect, the select lines, S0, S1, … Sn, "turn on" a specific AND

gate that passes the data through to the selected output. In Figure

8-27, if S1=0 and S0=1, then the D1 output will match the input from the

Data line and outputs D0, D2, and D3 will be forced to have an output of

zero. If S1=0, S0=1, and Data=0, then D1=0. If S1=0, S0=1, and Data=1,

then D1=1. Figure 8-28 presents the truth table for the 1-line-to-4-line

demultiplexer shown in Figure 8-27.

S1

S0

D0

D1

D2

D3
Data

 Chapter 8: Combinational Logic Applications 159

S1 S0 Data D0 D1 D2 D3
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 0
1 1 1 0 0 0 1

Figure 8-28 Truth Table for a 1-Line-to-4-Line Demultiplexer

8.7 Integrated Circuits
It may appear that much of our discussion up to this point has been

theoretical, but in reality, each of the circuits we've presented can easily
be implemented given the right tools. Prototypes used to test or verify
circuit designs can be made by wiring together small plastic chips that
offer access to the internal components through thin metal pins. These
chips, called integrated circuits (ICs), come in a wide variety of shapes,
sizes, and pin configurations. Figure
8-29 presents a sample of some ICs.

Figure 8-29 Examples of Integrated Circuits

Connecting the metal pins of these chips with other metal pins from
the same chip or additional chips is what allows us to create digital
circuits.

As for what we are connecting to them, the metal pins of the ICs
allow us access to the internal circuitry such as the inputs and outputs
of logic gates. Detailed information is available for all ICs from the
manufacturer allowing designers to understand the internal circuitry.

6

Sign	 extender	
¢  CPUs	 work	 with	 signed	 numbers	

§  Word	 size	 or	 smaller	
§  OMen	 need	 to	 convert	 to	 word	 size	

¢  Need	 to	 duplicate	 (extend)	 sign	 bit	
§  Preserves	 original	 number	 in	 larger	 container	

¢  How	 to	 do	 this?	

7

Sign	 extender	
¢  CPUs	 work	 with	 signed	 numbers	

§  Word	 size	 or	 smaller	
§  OMen	 need	 to	 convert	 to	 word	 size	

¢  Need	 to	 duplicate	 (extend)	 sign	 bit	
§  Preserves	 original	 number	 in	 larger	 container	

¢  How	 to	 do	 this?	
§  Just	 connect	 MSB	 input	 to	 sign	 extend	 bits!	
§  Only	 need	 wires	

8

ALU	
¢  Arithme0c	 Logic	 Unit	

§  Responsible	 for	 all	 computa.ons	 in	 computer	
§  Supported	 opera.ons	

§  AND	
§  OR	
§  Add	
§  Subtract	
§  Is	 less	 than	
§  Is	 equal	
§  Others:	 NOT,	 NOR,	 NAND…	

§  Design	 is	 similar	 to	 adder	
§  Start	 with	 1	 bit	 ALU,	 expand	

9

1	 bit	 ALU	
¢  Start	 with	 AND	 and	 OR	 opera0ons	

§  Inputs	 A	 and	 B	
§  Select	 opera.on	 by	 control	 signal	 OP	
§  Single	 output	 R	

¢  Hint:	 a	 mul0plexor	 will	 help!	
§  Op	 0	 =	 AND	
§  Op	 1	 =	 OR	

10

1	 bit	 ALU	
¢  Start	 with	 AND	 and	 OR	 opera0ons	

§  Inputs	 A	 and	 B	
§  Select	 opera.on	 by	 control	 signal	 OP	
§  Single	 output	 R	 C.5 Constructing a Basic Arithmetic Logic Unit C-27

Operation

1

0

Result

a

b

FIGURE C.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE C.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it has
3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE C.5.3 Input and output specifi cation for a 1-bit adder.

AppendixC-9780123747501.indd 27AppendixC-9780123747501.indd 27 26/07/11 6:28 PM26/07/11 6:28 PM

11

1	 bit	 ALU	
¢  Add	 in	 ADD	

§  We’ll	 use	 a	 full	 adder	
§  Inputs	 A,	 B,	 Cin	
§  Outputs	 S,	 Cout	
§  S	 =	 AB’Cin’+A’BCin’+A’B’Cin+ABCin	
§  Cout	 =	 AB+BCin+ACin	

12

1	 bit	 ALU	
¢  Add	 in	 ADD	

§  We’ll	 use	 a	 full	 adder	
§  Inputs	 A,	 B,	 Cin	
§  Outputs	 S,	 Cout	
§  S	 =	 AB’Cin’+A’BCin’+A’B’Cin+ABCin	
§  Cout	 =	 AB+BCin+ACin	

¢  Need	 to	 expand	 mux	

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page C-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Bin vert, but

AppendixC-9780123747501.indd 29AppendixC-9780123747501.indd 29 26/07/11 6:28 PM26/07/11 6:28 PM

13

Wider	 ALU	
¢  Can	 link	 1	 bit	 ALUs	 together	 to	 form	 large	 ALU	

§  32	 bit	 example	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

14

Subtract	
¢  Given	 that	 1	 bit	 ALUs	 form	 larger	 ALUs,	 implement	

subtract	
§  Remember	 Two’s	 complement!	

§  -‐x	 =	 (~x)+1	

¢  What	 do	 we	 need?	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page C-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Bin vert, but

AppendixC-9780123747501.indd 29AppendixC-9780123747501.indd 29 26/07/11 6:28 PM26/07/11 6:28 PM

15

Subtract	
¢  Given	 that	 1	 bit	 ALUs	 form	 larger	 ALUs,	 implement	

subtract	
§  Remember	 Two’s	 complement!	

§  -‐x	 =	 (~x)+1	

¢  What	 do	 we	 need?	
§  Invert	 B	 or	 A	
§  Add	 1	 to	 LSB	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page C-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Bin vert, but

AppendixC-9780123747501.indd 29AppendixC-9780123747501.indd 29 26/07/11 6:28 PM26/07/11 6:28 PM

16

Subtract	
¢  Invert	 B	

§  S.ll	 need	 to	 use	 adder,	 so	 don’t	 expand	 mux	 (keep	 using	 +	 op)	
§  Add	 control	 line	 to	 select	 inverted	 B	

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

(

 a + b) =
_
 a ·

__
 b

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU.
Figure C.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS
These four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most MIPS instructions can be performed
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction (slt).
Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse quently, slt will
set all but the least signifi cant bit to 0, with the least signifi cant bit set according to
the comparison. For the ALU to perform slt, we fi rst need to expand the three-input

 C.5 Constructing a Basic Arithmetic Logic Unit C-31

FIGURE C.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and
__
 b . By

selecting
__

 b (Binvert = 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s comple ment
subtraction of b from a instead of addition of b to a.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

1

0

AppendixC-9780123747501.indd 31AppendixC-9780123747501.indd 31 26/07/11 6:28 PM26/07/11 6:28 PM

17

Subtract	
¢  Add	 1	 to	 LSB	

§  If	 opera.on	 is	 subtract	
§  Set	 LSB	 carry	 in	 to	 1	
§  Set	 ALU	 op	 to	 +	

¢  This	 incredible	 convenience	 is	
why	 most	 computers	 use	
two’s	 complement	

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +
__

 b + 1 = a + (
__

 b + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte ger
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 30AppendixC-9780123747501.indd 30 26/07/11 6:28 PM26/07/11 6:28 PM

18

Equal	
¢  Add	 1bit	 ‘zero’	 output	 to	 ALU	

§  Set	 to	 1	 when	 A	 and	 B	 are	 equal	

¢  How	 to	 do?	
§  Subtract	 A	 and	 B	
§  If	 all	 bits	 are	 0,	 must	 be	 equal!	
§  OR	 all	 bits	
§  Invert	 result	

19

Other	 opera0ons	
¢  Could	 add	 more	 opera0ons	

§  NOR	 (invert	 A)	
§  ShiMing	 (special	 hardware)	
§  Many	 others…	

multiplexor in Figure C.5.8 to add an input for the slt result. We call that new input
Less and use it only for slt.

The top drawing of Figure C.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least signifi cant bit for set on less
than instructions.

What happens if we subtract b from a? If the difference is negative, then a < b
since

(a − b) < 0 ⇒ ((a − b) + b) < (0 + b)
 ⇒ a < b

We want the least signifi cant bit of a set on less than operation to be a 1 if a < b;
that is, a 1 if a − b is negative and a 0 if it’s positive. This desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following this
line of argument, we need only connect the sign bit from the adder output to the
least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of
Figure C.5.10 for the slt operation is not the output of the adder; the ALU out put
for the slt operation is obviously the input value Less.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

FIGURE C.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or
__
 a and

__
 b . By

selecting
_
 a (Ainvert = 1) and

__
 b (Binvert = 1), we get a NOR b instead of a AND b.

C-32 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 32AppendixC-9780123747501.indd 32 26/07/11 6:28 PM26/07/11 6:28 PM

ALU	 with	 NOR	 support	

20

Set	 less	 than	
¢  If	 A	 <	 B	

§  R	 =	 0x00…01	
¢  If	 not	 A	 <	 B	 (i.e.	 A	 >=	 B)	

§  R	 =	 0x00….00	

¢  How	 to	 do	 this?	
§  Subtract	 is	 useful	
§  Sign-‐bit	 (MSB)	 is	 useful	
§  Need	 to	 expand	 mux	 for	 new	 opera.on	

21

Set	 less	 than	
¢  If	 A	 <	 B	

§  R	 =	 0x00…01	
¢  If	 not	 A	 <	 B	 (i.e.	 A	 >=	 B)	

§  R	 =	 0x00….00	

¢  How	 to	 do	 this?	
§  Set	 LSB	 to	 MSB	 (sign	 bit)	
§  Output	 0	 for	 all	 other	 bits	

22

Set	 less	 than	
¢  If	 A	 <	 B	

§  R	 =	 0x00…01	
¢  If	 not	 A	 <	 B	 (i.e.	 A	 >=	 B)	

§  R	 =	 0x00….00	

¢  How	 to	 do	 this?	
§  Add	 new	 input	 ‘less’	

§  Can	 0	 to	 result	 mux	
§  Add	 new	 output	 ‘set’	 to	 MSB	 ALU	

§  Output	 MSB	 result	
§  Use	 later	

 C.5 Constructing a Basic Arithmetic Logic Unit C-33

FIGURE C.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b
__
 b , and

(bottom) a 1-bit ALU for the most signifi cant bit. The top drawing includes a direct input that is
connected to perform the set on less than operation (see Figure C.5.11); the bottom has a direct output from
the adder for the less than comparison called Set. (See Exercise C.24 at the end of this Appendix to see how
to calculate overfl ow with fewer inputs.)

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2!

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

AppendixC-9780123747501.indd 33AppendixC-9780123747501.indd 33 26/07/11 6:28 PM26/07/11 6:28 PM

 C.5 Constructing a Basic Arithmetic Logic Unit C-33

FIGURE C.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b
__
 b , and

(bottom) a 1-bit ALU for the most signifi cant bit. The top drawing includes a direct input that is
connected to perform the set on less than operation (see Figure C.5.11); the bottom has a direct output from
the adder for the less than comparison called Set. (See Exercise C.24 at the end of this Appendix to see how
to calculate overfl ow with fewer inputs.)

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2!

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

AppendixC-9780123747501.indd 33AppendixC-9780123747501.indd 33 26/07/11 6:28 PM26/07/11 6:28 PM

23

Set	 less	 than	
¢  If	 A	 <	 B	

§  R	 =	 0x00…01	
¢  If	 not	 A	 <	 B	 (i.e.	 A	 >=	 B)	

§  R	 =	 0x00….00	

¢  How	 to	 do	 this?	
§  Set	 ALUs	 to	 subtract	

§  MSB	 ‘set’	 is	 now	 sign	 bit	
§  Pass	 MSB	 ‘set’	 to	 LSB	 ‘less’	
§  Set	 all	 other	 ‘less’	 to	 0	

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long as
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion
logic since it is also associated with that bit.

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b,
and Result = 0 . . . 000 otherwise.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

C-34 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 34AppendixC-9780123747501.indd 34 26/07/11 6:28 PM26/07/11 6:28 PM

24

Set	 less	 than	
¢  If	 A	 <	 B	

§  R	 =	 0x00…01	
¢  If	 not	 A	 <	 B	 (i.e.	 A	 >=	 B)	

§  R	 =	 0x00….00	

¢  Result	
§  Subtract	 results	 in	 <	 0	

§  Sign	 bit	 of	 1	 is	 sent	 to	 LSB	
§  Subtract	 results	 in	 >=	 0	

§  Sign	 bit	 of	 0	 is	 sent	 to	 LSB	
§  All	 other	 bits	 set	 to	 0	

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long as
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion
logic since it is also associated with that bit.

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b,
and Result = 0 . . . 000 otherwise.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

C-34 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 34AppendixC-9780123747501.indd 34 26/07/11 6:28 PM26/07/11 6:28 PM

