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Today:	  Basic	  computa0onal	  structures	  
¢  Helpful	  structures	  

§  Decoder/encoder	  
§  Mul.plexor/demul.plexor	  
§  Sign	  extender	  

¢  ALU	  
§  ALU	  control	  
§  Zero	  detector	  
§  Set	  less	  than	  
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Decoder/encoder	  
¢  Outputs	  unique	  signal	  based	  on	  input	  

§  Inputs:	  state	  of	  systems	  
§  Output:	  unique	  representa.ve	  code	  
§  2	  inputs	  =	  22	  outputs	  

¢  Encoder	  reverses	  the	  process	  
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A B C EN 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

Figure 8-21   Truth Table to Enable a Device for A=1, B=1, & C=0 

Decoder circuits are a group of enable circuits that have an 
individual output that satisfies each row of the truth table. In other 
words, a decoder has a unique output for each combination of ones and 
zeros possible at its inputs. 

For example, a 2-input decoder circuit with inputs A and B can have 
an output that is 1 only when A=0 and B=0, an output that is 1 only 
when A=0 and B=1, an output that is 1 only when A=1 and B=0, and 
an output that is 1 only when A=1 and B=1. The boolean expressions 
that satisfy this decoder circuit are: 
      _ _       _           _ 
EN0 = A·B EN1 = A·B EN2 = A·B EN3 = A·B 
 

This two-input circuit is called a 1-of-4 decoder due to the fact that 
exactly one of its four outputs will be enabled at any one time. A 
change at any of the inputs will change which output is enabled, but 
never change the fact that only one is enabled. As for the logic circuit, 
it has four AND gates, one satisfying each of the above boolean 
expressions. Figure 8-22 presents this digital circuit. 

 
 
 
 
 
 
 
 

Figure 8-22   Digital Circuit for a 1-of-4 Decoder 
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Mul0plexor	  
¢  Select	  single	  data	  stream	  from	  mul0ple	  channels	  

§  Mul.ple	  data	  inputs	  
§  Single	  data	  output	  
§  Control	  S	  selects	  single	  data	  stream	  

156   Computer Organization and Design Fundamentals 
 

connected to a single data output. With n binary "select lines," one of 2n 
data inputs can be connected to the output. Figure 8-25 presents a block 
diagram of a multiplexer with three select lines, S2, S1, and S0, and 
eight data lines, D0 through D7. 

 
 
 
 
 
 
 
 
 

Figure 8-25   Block Diagram of an Eight Channel Multiplexer 

A multiplexer acts like a television channel selector. All of the 
stations are broadcast constantly to the television's input, but only the 
channel that has been selected is displayed. As for the eight-channel 
multiplexer in Figure 8-25, its operation can be described with the truth 
table shown in Figure 8-26. 

 
S2 S1 S0 Y 
0 0 0 D0 
0 0 1 D1 
0 1 0 D2 
0 1 1 D3 
1 0 0 D4 
1 0 1 D5 
1 1 0 D6 
1 1 1 D7 

Figure 8-26   Truth Table for an Eight Channel Multiplexer 

For example, if the selector inputs are set to S2 = 0, S1 = 1, and  
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y 
will output a 0. 

The number of data inputs depends on the number of selector inputs. 
For example, if there is only one selector line, S0, then there can only 
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the 

 S2 S1 S0 
D0 
D1 
D2 
D3 Y
D4 
D5 
D6 
D7 

Output 
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Demul0plexor	  
¢  Outputs	  data	  to	  one	  of	  mul0ple	  data	  channels	  

§  Single	  data	  input	  
§  Mul.ple	  data	  outputs	  
§  Control	  S	  selects	  data	  output	  
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multiple printers connected to a computer. A document can only be 

printed to one of the printers, so the computer selects one out of the 

group of printers to which it will send its output. 

The design of a demultiplexer is much like the design of a decoder. 

The decoder selected one of many outputs to which it would send a 

zero. The difference is that the demultiplexer sends data to that output 

rather than a zero. 

The circuit of a demultiplexer is based on the non-active-low 

decoder where each output is connected to an AND gate. An input is 

added to each of the AND gates that will contain the demultiplexer's 

data input. If the data input equals one, then the output of the AND gate 

that is selected by the selector inputs will be a one. If the data input 

equals zero, then the output of the selected AND gate will be zero. 

Meanwhile, all of the other AND gates output a zero, i.e., no data is 

passed to them. Figure 8-27 presents a demultiplexer circuit with two 

selector inputs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-27   Logic Circuit for a 1-Line-to-4-Line Demultiplexer 

In effect, the select lines, S0, S1, … Sn, "turn on" a specific AND 

gate that passes the data through to the selected output. In Figure  

8-27, if S1=0 and S0=1, then the D1 output will match the input from the 

Data line and outputs D0, D2, and D3 will be forced to have an output of 

zero. If S1=0, S0=1, and Data=0, then D1=0. If S1=0, S0=1, and Data=1, 

then D1=1. Figure 8-28 presents the truth table for the 1-line-to-4-line 

demultiplexer shown in Figure 8-27. 
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S1 S0 Data D0 D1 D2 D3 
0 0 0 0 0 0 0 
0 0 1 1 0 0 0 
0 1 0 0 0 0 0 
0 1 1 0 1 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 1 0 
1 1 0 0 0 0 0 
1 1 1 0 0 0 1 

Figure 8-28   Truth Table for a 1-Line-to-4-Line Demultiplexer 

8.7 Integrated Circuits 
It may appear that much of our discussion up to this point has been 

theoretical, but in reality, each of the circuits we've presented can easily 
be implemented given the right tools. Prototypes used to test or verify 
circuit designs can be made by wiring together small plastic chips that 
offer access to the internal components through thin metal pins. These 
chips, called integrated circuits (ICs), come in a wide variety of shapes, 
sizes, and pin configurations. Figure  
8-29 presents a sample of some ICs. 

 

 

Figure 8-29   Examples of Integrated Circuits 

Connecting the metal pins of these chips with other metal pins from 
the same chip or additional chips is what allows us to create digital 
circuits. 

As for what we are connecting to them, the metal pins of the ICs 
allow us access to the internal circuitry such as the inputs and outputs 
of logic gates. Detailed information is available for all ICs from the 
manufacturer allowing designers to understand the internal circuitry. 
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Sign	  extender	  
¢  CPUs	  work	  with	  signed	  numbers	  

§  Word	  size	  or	  smaller	  
§  OMen	  need	  to	  convert	  to	  word	  size	  

¢  Need	  to	  duplicate	  (extend)	  sign	  bit	  
§  Preserves	  original	  number	  in	  larger	  container	  

¢  How	  to	  do	  this?	  
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Sign	  extender	  
¢  CPUs	  work	  with	  signed	  numbers	  

§  Word	  size	  or	  smaller	  
§  OMen	  need	  to	  convert	  to	  word	  size	  

¢  Need	  to	  duplicate	  (extend)	  sign	  bit	  
§  Preserves	  original	  number	  in	  larger	  container	  

¢  How	  to	  do	  this?	  
§  Just	  connect	  MSB	  input	  to	  sign	  extend	  bits!	  
§  Only	  need	  wires	  



8 

ALU	  
¢  Arithme0c	  Logic	  Unit	  

§  Responsible	  for	  all	  computa.ons	  in	  computer	  
§  Supported	  opera.ons	  

§  AND	  
§  OR	  
§  Add	  
§  Subtract	  
§  Is	  less	  than	  
§  Is	  equal	  
§  Others:	  NOT,	  NOR,	  NAND…	  

§  Design	  is	  similar	  to	  adder	  
§  Start	  with	  1	  bit	  ALU,	  expand	  
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1	  bit	  ALU	  
¢  Start	  with	  AND	  and	  OR	  opera0ons	  

§  Inputs	  A	  and	  B	  
§  Select	  opera.on	  by	  control	  signal	  OP	  
§  Single	  output	  R	  

¢  Hint:	  a	  mul0plexor	  will	  help!	  
§  Op	  0	  =	  AND	  
§  Op	  1	  =	  OR	  
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1	  bit	  ALU	  
¢  Start	  with	  AND	  and	  OR	  opera0ons	  

§  Inputs	  A	  and	  B	  
§  Select	  opera.on	  by	  control	  signal	  OP	  
§  Single	  output	  R	   C.5 Constructing a Basic Arithmetic Logic Unit  C-27

Operation

1

0

Result

a

b

FIGURE C.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE C.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it has 
3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder. 

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE C.5.3 Input and output specifi cation for a 1-bit adder.
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1	  bit	  ALU	  
¢  Add	  in	  ADD	  

§  We’ll	  use	  a	  full	  adder	  
§  Inputs	  A,	  B,	  Cin	  
§  Outputs	  S,	  Cout	  
§  S	  =	  AB’Cin’+A’BCin’+A’B’Cin+ABCin	  
§  Cout	  =	  AB+BCin+ACin	  
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1	  bit	  ALU	  
¢  Add	  in	  ADD	  

§  We’ll	  use	  a	  full	  adder	  
§  Inputs	  A,	  B,	  Cin	  
§  Outputs	  S,	  Cout	  
§  S	  =	  AB’Cin’+A’BCin’+A’B’Cin+ABCin	  
§  Cout	  =	  AB+BCin+ACin	  

¢  Need	  to	  expand	  mux	  

Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit  C-29

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows 
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a 
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the 
way through the adder, causing a carry out of the most signifi cant bit (Result31). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page C-38.

Subtraction is the same as adding the negative version of an operand, and this 
is how adders perform subtraction. Recall that the shortcut for negating a two’s 
complement number is to invert each bit (sometimes called the one’s complement) 
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 
between b and  

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added 
multiplexor gives the option of b or its inverted value, depending on Bin vert, but 

AppendixC-9780123747501.indd   29AppendixC-9780123747501.indd   29 26/07/11   6:28 PM26/07/11   6:28 PM
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Wider	  ALU	  
¢  Can	  link	  1	  bit	  ALUs	  together	  to	  form	  large	  ALU	  

§  32	  bit	  example	  

this is only one step in negating a two’s complement number. Notice that the least 
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate 
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +  
__

 b   + 1 = a + ( 
__

 b   + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for inte ger 
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit 
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

C-30 Appendix C The Basics of Logic Design
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Subtract	  
¢  Given	  that	  1	  bit	  ALUs	  form	  larger	  ALUs,	  implement	  

subtract	  
§  Remember	  Two’s	  complement!	  

§  -‐x	  =	  (~x)+1	  

¢  What	  do	  we	  need?	  

this is only one step in negating a two’s complement number. Notice that the least 
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate 
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +  
__

 b   + 1 = a + ( 
__

 b   + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for inte ger 
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit 
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.
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Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.

 C.5 Constructing a Basic Arithmetic Logic Unit  C-29

a

b

CarryIn

CarryOut

Operation

1

0

21
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FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows 
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a 
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the 
way through the adder, causing a carry out of the most signifi cant bit (Result31). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page C-38.

Subtraction is the same as adding the negative version of an operand, and this 
is how adders perform subtraction. Recall that the shortcut for negating a two’s 
complement number is to invert each bit (sometimes called the one’s complement) 
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 
between b and  

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added 
multiplexor gives the option of b or its inverted value, depending on Bin vert, but 
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Subtract	  
¢  Given	  that	  1	  bit	  ALUs	  form	  larger	  ALUs,	  implement	  

subtract	  
§  Remember	  Two’s	  complement!	  

§  -‐x	  =	  (~x)+1	  

¢  What	  do	  we	  need?	  
§  Invert	  B	  or	  A	  
§  Add	  1	  to	  LSB	  

this is only one step in negating a two’s complement number. Notice that the least 
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate 
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +  
__

 b   + 1 = a + ( 
__

 b   + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for inte ger 
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit 
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.
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Figure C.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.
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FIGURE C.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure C.5.5).

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Fig ure C.5.7 shows 
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a 
quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all the 
way through the adder, causing a carry out of the most signifi cant bit (Result31). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page C-38.

Subtraction is the same as adding the negative version of an operand, and this 
is how adders perform subtraction. Recall that the shortcut for negating a two’s 
complement number is to invert each bit (sometimes called the one’s complement) 
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 
between b and  

__
 b , as Figure C.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure C.5.7. The added 
multiplexor gives the option of b or its inverted value, depending on Bin vert, but 
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Subtract	  
¢  Invert	  B	  

§  S.ll	  need	  to	  use	  adder,	  so	  don’t	  expand	  mux	  (keep	  using	  +	  op)	  
§  Add	  control	  line	  to	  select	  inverted	  B	  

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for 
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

( 
_____

  a + b ) =  
_
 a  ·  

__
 b 

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called 
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. 
Figure C.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS
These four operations—add, subtract, AND, OR—are found in the ALU of almost 
every computer, and the operations of most MIPS instructions can be performed 
by this ALU. But the design of the ALU is incomplete. 

One instruction that still needs support is the set on less than instruction (slt). 
Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse quently, slt will 
set all but the least signifi cant bit to 0, with the least signifi cant bit set according to 
the comparison. For the ALU to perform slt, we fi rst need to expand the three-input 

 C.5 Constructing a Basic Arithmetic Logic Unit  C-31

FIGURE C.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and  
__
 b . By 

selecting  
__

 b  (Binvert = 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s comple ment 
subtraction of b from a instead of addition of b to a.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

21

Result

1

0
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Subtract	  
¢  Add	  1	  to	  LSB	  

§  If	  opera.on	  is	  subtract	  
§  Set	  LSB	  carry	  in	  to	  1	  
§  Set	  ALU	  op	  to	  +	  

¢  This	  incredible	  convenience	  is	  
why	  most	  computers	  use	  
two’s	  complement	  

this is only one step in negating a two’s complement number. Notice that the least 
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate 
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a +  
__

 b   + 1 = a + ( 
__

 b   + 1) = a + (−b) = a − b

The simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for inte ger 
computer arithmetic.

FIGURE C.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit 
is connected to the CarryIn of the more signifi cant bit. This organization is called ripple carry.
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Equal	  
¢  Add	  1bit	  ‘zero’	  output	  to	  ALU	  

§  Set	  to	  1	  when	  A	  and	  B	  are	  equal	  

¢  How	  to	  do?	  
§  Subtract	  A	  and	  B	  
§  If	  all	  bits	  are	  0,	  must	  be	  equal!	  
§  OR	  all	  bits	  
§  Invert	  result	  
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Other	  opera0ons	  
¢  Could	  add	  more	  opera0ons	  

§  NOR	  (invert	  A)	  
§  ShiMing	  (special	  hardware)	  
§  Many	  others…	  

multiplexor in Figure C.5.8 to add an input for the slt result. We call that new input 
Less and use it only for slt.

The top drawing of Figure C.5.10 shows the new 1-bit ALU with the expanded 
multiplexor. From the description of slt above, we must connect 0 to the Less 
input for the upper 31 bits of the ALU, since those bits are always set to 0. What 
remains to consider is how to compare and set the least signifi cant bit for set on less 
than instructions. 

What happens if we subtract b from a? If the difference is negative, then a < b 
since

(a − b) < 0 ⇒ ((a − b) + b) < (0 + b)
 ⇒ a < b

We want the least signifi cant bit of a set on less than operation to be a 1 if a < b; 
that is, a 1 if a − b is negative and a 0 if it’s positive. This desired result corresponds 
exactly to the sign bit values: 1 means negative and 0 means positive. Following this 
line of argument, we need only connect the sign bit from the adder output to the 
least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of 
Figure C.5.10 for the slt operation is not the output of the adder; the ALU out put 
for the slt operation is obviously the input value Less.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2!

Result

1

0

Ainvert

1

0

FIGURE C.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or  
__
 a  and  

__
 b . By 

selecting  
_
 a  (Ainvert = 1) and  

__
 b  (Binvert = 1), we get a NOR b instead of a AND b.
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Set	  less	  than	  
¢  If	  A	  <	  B	  

§  R	  =	  0x00…01	  
¢  If	  not	  A	  <	  B	  (i.e.	  A	  >=	  B)	  

§  R	  =	  0x00….00	  

¢  How	  to	  do	  this?	  
§  Subtract	  is	  useful	  
§  Sign-‐bit	  (MSB)	  is	  useful	  
§  Need	  to	  expand	  mux	  for	  new	  opera.on	  



21 

Set	  less	  than	  
¢  If	  A	  <	  B	  

§  R	  =	  0x00…01	  
¢  If	  not	  A	  <	  B	  (i.e.	  A	  >=	  B)	  

§  R	  =	  0x00….00	  

¢  How	  to	  do	  this?	  
§  Set	  LSB	  to	  MSB	  (sign	  bit)	  
§  Output	  0	  for	  all	  other	  bits	  
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Set	  less	  than	  
¢  If	  A	  <	  B	  

§  R	  =	  0x00…01	  
¢  If	  not	  A	  <	  B	  (i.e.	  A	  >=	  B)	  

§  R	  =	  0x00….00	  

¢  How	  to	  do	  this?	  
§  Add	  new	  input	  ‘less’	  

§  Can	  0	  to	  result	  mux	  
§  Add	  new	  output	  ‘set’	  to	  MSB	  ALU	  

§  Output	  MSB	  result	  
§  Use	  later	  

 C.5 Constructing a Basic Arithmetic Logic Unit  C-33

FIGURE C.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b 
__
 b , and 

(bottom) a 1-bit ALU for the most signifi cant bit. The top drawing includes a direct input that is 
connected to perform the set on less than operation (see Figure C.5.11); the bottom has a direct output from 
the adder for the less than comparison called Set. (See Exercise C.24 at the end of this Appendix to see how 
to calculate overfl ow with fewer inputs.)
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Set	  less	  than	  
¢  If	  A	  <	  B	  

§  R	  =	  0x00…01	  
¢  If	  not	  A	  <	  B	  (i.e.	  A	  >=	  B)	  

§  R	  =	  0x00….00	  

¢  How	  to	  do	  this?	  
§  Set	  ALUs	  to	  subtract	  

§  MSB	  ‘set’	  is	  now	  sign	  bit	  
§  Pass	  MSB	  ‘set’	  to	  LSB	  ‘less’	  
§  Set	  all	  other	  ‘less’	  to	  0	  

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra 
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the 
design, with this new adder output line called Set, and used only for slt. As long as 
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion 
logic since it is also associated with that bit. 

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of 
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0 
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU 
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b, 
and Result = 0 . . . 000 otherwise.
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Set	  less	  than	  
¢  If	  A	  <	  B	  

§  R	  =	  0x00…01	  
¢  If	  not	  A	  <	  B	  (i.e.	  A	  >=	  B)	  

§  R	  =	  0x00….00	  

¢  Result	  
§  Subtract	  results	  in	  <	  0	  

§  Sign	  bit	  of	  1	  is	  sent	  to	  LSB	  
§  Subtract	  results	  in	  >=	  0	  

§  Sign	  bit	  of	  0	  is	  sent	  to	  LSB	  
§  All	  other	  bits	  set	  to	  0	  

Thus, we need a new 1-bit ALU for the most signifi cant bit that has an extra 
output bit: the adder output. The bottom drawing of Figure C.5.10 shows the 
design, with this new adder output line called Set, and used only for slt. As long as 
we need a special ALU for the most signifi cant bit, we added the overfl ow detec tion 
logic since it is also associated with that bit. 

FIGURE C.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of 
Figure C.5.10 and one 1-bit ALU in the bottom of that fi gure. The Less inputs are connected to 0 
except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the ALU 
performs a − b and we select the input 3 in the multiplexor in Figure C.5.10, then Result = 0 . . . 001 if a < b, 
and Result = 0 . . . 000 otherwise.
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