
1

CSSE132	
Introduc0on	 to	 Computer	 Systems	

10	 :	 Sequen*al	 Logic	
March	 19,	 2013	

Adapted from Carnegie Mellon 15-213

2

Today:	 Sequen0al	 Logic	
¢  Sequen0al	 logic	
¢  Clocks	
¢  Latches	
¢  Flip-‐flops	
¢  Build	 a	 register	 file	
¢  Memory	

3

Sequen0al	 Logic	
¢  Combina0onal	 logic	

§  Defined	 by	 Boolean	 expression	
§  Output	 based	 only	 on	 input	

¢  Sequen0al	 logic	
§  Maintains	 stored	 values	 or	 state	
§  Retains	 data	 for	 later	 use	
§  Output	 based	 on	 previous	 input	
§  Can	 build	 state	 machines	

Next-state�
functionCurrent state

Clock

Output�
function

Next�
state

Outputs

Inputs

4

Clock	
¢  Produce	 regular	 changing	 signal	

§  Special	 hardware	 that	 produces	 oscilla*ng	 signal	
§  Several	 waveform	 outputs	

¢  Square	 waveform	
§  Has	 period	 (frequency)	
§  Duty	 cycle	 when	 power	 is	 on	

§  Rising	 edge	 (power	 up)	
§  Falling	 edge	 (power	 down)	

§  Duty	 cycle	 oNen	 50%	 of	 period	

¢  Will	 allow	 us	 to	 transi0on	 between	 states	

5

Memory	 circuit	
¢  Two	 invertor	 loop	

§  Preserve	 signal	
¢  Circuit	 is	 hard	 to	 use	

§  Can	 read	 stored	 value	
§  Can’t	 update	 stored	 value	

¢  Idea	 is	 useful	

 Chapter 10: Memory Cells 205

10.2 The S-R Latch
Computer memory is made from arrays of cells, each of which is

capable of storing a single bit, a one or a zero. The goal is to send a
logic one or a logic zero to a device, then after leaving it unattended for
a period of time, come back and find the value still there. A simple wire
alone cannot do this. A digital value placed on a wire will, after the
value is removed, quickly loose the charge and vanish.

Early memory stored data in small doughnut shaped rings of iron.
Wires that were woven through the centers of the iron rings were
capable of magnetizing the rings in one of two directions. If each ring
was allowed to represent a bit, then one direction of magnetization
would represent a one while the other represented a zero. As long as
nothing disturbed the magnetization, the value of the stored bit could be
detected later using the same wires that stored the original value.

With the advent of digital circuitry, the magnetic material was
replaced with gates. A circuit could be developed where the output
could be routed back around to the circuit's inputs in order to maintain
the stored value. This "ring" provided feedback which allowed the
circuit's current data to drive the circuit's future data and thus maintain
its condition. The circuit in Figure 10-3 is a simple example of this.

The output of the first inverter in the circuit of Figure 10-3 is fed
into the input of a second inverter. Since the inverse of an inverse is the
original value, the input to the first inverter is equal to the output of the
second inverter. If we connect the output of the second inverter to the
input of the first inverter, then the logic value will be maintained until
power to the circuit is removed.

Figure 10-3 Primitive Feedback Circuit using Inverters

The problem with the circuit of Figure 10-3 is that there is no way to
modify the value that is stored. We need to replace either one or both of
the inverters with a device that has more than one input, but one that
can also operate the same way as the inverter during periods when we
want the data to be stable. It turns out that the NAND gate can do this.

6

Memory	 circuit	
¢  Build	 invertor	 with	 NAND	

§  Set	 inputs	 to	 1	
§  Same	 as	 invertor	

206 Computer Organization and Design Fundamentals

Figure 10-4 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-4 Operation of a NAND Gate with One Input Tied High

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-5 replaces the inverters of Figure 10-3 with NAND gates.

Figure 10-5 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-6.

Figure 10-6 Only Two Possible States of Circuit in Figure 10-5

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a

A 1 X
0 1 1
1 1 0

A
1 X

1

1

1

1

0

1

1

1

1

0

7

Memory	 circuit	
¢  Build	 loop	 with	 NAND	

§  Same	 idea	

206 Computer Organization and Design Fundamentals

Figure 10-4 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-4 Operation of a NAND Gate with One Input Tied High

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-5 replaces the inverters of Figure 10-3 with NAND gates.

Figure 10-5 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-6.

Figure 10-6 Only Two Possible States of Circuit in Figure 10-5

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a

A 1 X
0 1 1
1 1 0

A
1 X

1

1

1

1

0

1

1

1

1

0

8

Memory	 circuit	
¢  Build	 loop	 with	 NAND	

§  Same	 idea	
§  Can	 store	 0	 or	 1	

206 Computer Organization and Design Fundamentals

Figure 10-4 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-4 Operation of a NAND Gate with One Input Tied High

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-5 replaces the inverters of Figure 10-3 with NAND gates.

Figure 10-5 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-6.

Figure 10-6 Only Two Possible States of Circuit in Figure 10-5

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a

A 1 X
0 1 1
1 1 0

A
1 X

1

1

1

1

0

1

1

1

1

0

9

Changing	 value	
¢  Toggle	 top	 input	

§  Set	 to	 0	
§  Wait	 a	 bit	
§  Set	 back	 to	 1	

¢  What	 new	 output	 if	 originally	
§  Top	 NAND	 output	 is	 1?	
§  Top	 NAND	 output	 is	 0?	

206 Computer Organization and Design Fundamentals

Figure 10-4 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-4 Operation of a NAND Gate with One Input Tied High

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-5 replaces the inverters of Figure 10-3 with NAND gates.

Figure 10-5 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-6.

Figure 10-6 Only Two Possible States of Circuit in Figure 10-5

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a

A 1 X
0 1 1
1 1 0

A
1 X

1

1

1

1

0

1

1

1

1

0

A B AND NAND
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

206 Computer Organization and Design Fundamentals

Figure 10-4 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-4 Operation of a NAND Gate with One Input Tied High

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-5 replaces the inverters of Figure 10-3 with NAND gates.

Figure 10-5 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-6.

Figure 10-6 Only Two Possible States of Circuit in Figure 10-5

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a

A 1 X
0 1 1
1 1 0

A
1 X

1

1

1

1

0

1

1

1

1

0

10

Changing	 value	
¢  Change	 top	 input	

§  Top	 input	 set	 to	 0	
§  Stored	 value	 becomes	 1	
§  1	 value	 is	 retained	 even	 if	 input	 goes	 to	 1	

 Chapter 10: Memory Cells 207

zero is placed on the free input of the top NAND gate, then the output
of that NAND gate is forced to one. That one is routed back to the input
of the lower NAND gate where the other input is one. A NAND gate
with all of its inputs set to one has an output of zero. That zero is routed
back to the input of the top NAND gate whose other input is a zero. A
NAND gate with all of its inputs set to zero has an output of one. This
means that the system has achieved a stable state.

If the free input of the top NAND gate returns to a one, the zero
input to it from the lower NAND gate makes it so that there is no
change to the one currently being output from it. In other words,
returning the free input of the top NAND gate back to a one does not
change the output of the circuit. These steps are represented graphically
in the circuit diagrams of Figure 10-7.

Figure 10-7 Operation of a Simple Memory Cell

This means that the circuit can be used to store a one in the top
NAND gate and a zero in the bottom NAND gate by toggling the free

0

1

1 0

1

1

01

0

1

1

01

0
1

1

1

01

0

a.) A zero to the free input
of the top NAND gate
forces a one to its output

b.) That one passes to the
bottom NAND which in
turn outputs a zero

c.) A zero from the bottom
NAND returns to the lower
input of the top NAND

d.) The second zero at the top
NAND holds its output even
if the free input returns to 1

 Chapter 10: Memory Cells 207

zero is placed on the free input of the top NAND gate, then the output
of that NAND gate is forced to one. That one is routed back to the input
of the lower NAND gate where the other input is one. A NAND gate
with all of its inputs set to one has an output of zero. That zero is routed
back to the input of the top NAND gate whose other input is a zero. A
NAND gate with all of its inputs set to zero has an output of one. This
means that the system has achieved a stable state.

If the free input of the top NAND gate returns to a one, the zero
input to it from the lower NAND gate makes it so that there is no
change to the one currently being output from it. In other words,
returning the free input of the top NAND gate back to a one does not
change the output of the circuit. These steps are represented graphically
in the circuit diagrams of Figure 10-7.

Figure 10-7 Operation of a Simple Memory Cell

This means that the circuit can be used to store a one in the top
NAND gate and a zero in the bottom NAND gate by toggling the free

0

1

1 0

1

1

01

0

1

1

01

0
1

1

1

01

0

a.) A zero to the free input
of the top NAND gate
forces a one to its output

b.) That one passes to the
bottom NAND which in
turn outputs a zero

c.) A zero from the bottom
NAND returns to the lower
input of the top NAND

d.) The second zero at the top
NAND holds its output even
if the free input returns to 1

 Chapter 10: Memory Cells 207

zero is placed on the free input of the top NAND gate, then the output
of that NAND gate is forced to one. That one is routed back to the input
of the lower NAND gate where the other input is one. A NAND gate
with all of its inputs set to one has an output of zero. That zero is routed
back to the input of the top NAND gate whose other input is a zero. A
NAND gate with all of its inputs set to zero has an output of one. This
means that the system has achieved a stable state.

If the free input of the top NAND gate returns to a one, the zero
input to it from the lower NAND gate makes it so that there is no
change to the one currently being output from it. In other words,
returning the free input of the top NAND gate back to a one does not
change the output of the circuit. These steps are represented graphically
in the circuit diagrams of Figure 10-7.

Figure 10-7 Operation of a Simple Memory Cell

This means that the circuit can be used to store a one in the top
NAND gate and a zero in the bottom NAND gate by toggling the free

0

1

1 0

1

1

01

0

1

1

01

0
1

1

1

01

0

a.) A zero to the free input
of the top NAND gate
forces a one to its output

b.) That one passes to the
bottom NAND which in
turn outputs a zero

c.) A zero from the bottom
NAND returns to the lower
input of the top NAND

d.) The second zero at the top
NAND holds its output even
if the free input returns to 1

A B NAND
0 0 1
0 1 1
1 0 1
1 1 0

11

Changing	 value	
¢  Toggle	 boOom	 input	

§  Set	 to	 0	
§  Wait	 a	 bit	
§  Set	 back	 to	 1	

¢  Ini0al	 value	 does	 not	 maOer!	

206 Computer Organization and Design Fundamentals

Figure 10-4 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-4 Operation of a NAND Gate with One Input Tied High

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-5 replaces the inverters of Figure 10-3 with NAND gates.

Figure 10-5 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-6.

Figure 10-6 Only Two Possible States of Circuit in Figure 10-5

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a

A 1 X
0 1 1
1 1 0

A
1 X

1

1

1

1

0

1

1

1

1

0

A B AND NAND
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

206 Computer Organization and Design Fundamentals

Figure 10-4 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-4 Operation of a NAND Gate with One Input Tied High

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-5 replaces the inverters of Figure 10-3 with NAND gates.

Figure 10-5 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-6.

Figure 10-6 Only Two Possible States of Circuit in Figure 10-5

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a

A 1 X
0 1 1
1 1 0

A
1 X

1

1

1

1

0

1

1

1

1

0

12

Changing	 value	
¢  Change	 boOom	 input	

§  BoYom	 input	 set	 to	 0	
§  Stored	 value	 becomes	 0	
§  0	 value	 is	 retained	 even	 if	 input	 goes	 to	 1	

A B NAND
0 0 1
0 1 1
1 0 1
1 1 0

208 Computer Organization and Design Fundamentals

input on the top NAND gate from a one to a zero and back to a one.
Figure 10-8 shows what happens when we toggle the free input on the
bottom NAND gate from a one to a zero and back to a one.

Figure 10-8 Operation of a Simple Memory Cell (continued)

This NAND gate circuit represents the basic circuit used to store a
single bit using logic gates. Notice that in step d of both figures the
circuit is stable with the opposing NAND gates outputting values that
are inverses of each other. In addition, notice that the circuit's output is
changed by placing a zero on the free input of one of the NAND gates.

Figure 10-9 presents the standard form of this circuit with the inputs
labeled S and R and the outputs labeled Q and Q . The bars placed
over the inputs indicate that they are active low inputs while the bar
over one of the outputs indicates that it is an inverted value of Q.

This circuit is referred to as the S-R latch. The output Q is set to a
one if the S input goes low while R stays high. The output Q is reset
to a zero if the R input goes low while S stays high. If both of these

1

0
1

1

0

0

1

1

1

0

0

10

1

1

1

0

10

1

a.) A zero to the free input of
the bottom NAND gate
forces a one to its output

b.) That one passes to the
top NAND which in turn
outputs a zero

c.) A zero from the top NAND
returns to the lower input of
the bottom NAND

d.) The second zero at the bottom
NAND holds its output even
if the free input returns to 1

208 Computer Organization and Design Fundamentals

input on the top NAND gate from a one to a zero and back to a one.
Figure 10-8 shows what happens when we toggle the free input on the
bottom NAND gate from a one to a zero and back to a one.

Figure 10-8 Operation of a Simple Memory Cell (continued)

This NAND gate circuit represents the basic circuit used to store a
single bit using logic gates. Notice that in step d of both figures the
circuit is stable with the opposing NAND gates outputting values that
are inverses of each other. In addition, notice that the circuit's output is
changed by placing a zero on the free input of one of the NAND gates.

Figure 10-9 presents the standard form of this circuit with the inputs
labeled S and R and the outputs labeled Q and Q . The bars placed
over the inputs indicate that they are active low inputs while the bar
over one of the outputs indicates that it is an inverted value of Q.

This circuit is referred to as the S-R latch. The output Q is set to a
one if the S input goes low while R stays high. The output Q is reset
to a zero if the R input goes low while S stays high. If both of these

1

0
1

1

0

0

1

1

1

0

0

10

1

1

1

0

10

1

a.) A zero to the free input of
the bottom NAND gate
forces a one to its output

b.) That one passes to the
top NAND which in turn
outputs a zero

c.) A zero from the top NAND
returns to the lower input of
the bottom NAND

d.) The second zero at the bottom
NAND holds its output even
if the free input returns to 1

208 Computer Organization and Design Fundamentals

input on the top NAND gate from a one to a zero and back to a one.
Figure 10-8 shows what happens when we toggle the free input on the
bottom NAND gate from a one to a zero and back to a one.

Figure 10-8 Operation of a Simple Memory Cell (continued)

This NAND gate circuit represents the basic circuit used to store a
single bit using logic gates. Notice that in step d of both figures the
circuit is stable with the opposing NAND gates outputting values that
are inverses of each other. In addition, notice that the circuit's output is
changed by placing a zero on the free input of one of the NAND gates.

Figure 10-9 presents the standard form of this circuit with the inputs
labeled S and R and the outputs labeled Q and Q . The bars placed
over the inputs indicate that they are active low inputs while the bar
over one of the outputs indicates that it is an inverted value of Q.

This circuit is referred to as the S-R latch. The output Q is set to a
one if the S input goes low while R stays high. The output Q is reset
to a zero if the R input goes low while S stays high. If both of these

1

0
1

1

0

0

1

1

1

0

0

10

1

1

1

0

10

1

a.) A zero to the free input of
the bottom NAND gate
forces a one to its output

b.) That one passes to the
top NAND which in turn
outputs a zero

c.) A zero from the top NAND
returns to the lower input of
the bottom NAND

d.) The second zero at the bottom
NAND holds its output even
if the free input returns to 1

13

SR	 Latch	
¢  Two	 inputs,	 S,R	 (set,	 reset)	

§  Change	 stored	 value	 between	 1,0	
¢  Two	 outputs	 Q,	 Q’	

§  Q	 is	 stored	 value	
§  Q’	 must	 always	 be	 opposite	 of	 stored	 value	

 Chapter 10: Memory Cells 209

inputs are high, i.e., logic one, then the circuit maintains the current
value of Q. The truth table for the S-R latch is shown in Figure 10-10.

Figure 10-9 S-R Latch Figure 10-10 S-R Latch Truth Table

Notice that the row of the truth table where both inputs equal zero
produces an undefined output. Actually, the output is defined: both Q
and its inverse are equal to one. What makes this case undefined is that
when both of the inputs return to one, the output of the system becomes
unpredictable, and possibly unstable. It is for this reason that the top
row of this truth table is considered illegal and is to be avoided for any
implementation of the S-R latch circuit.

10.3 The D Latch
The S-R latch is presented here to show how latches store data. In

general, every logic gate-based memory device has an S-R latch
embedded in it. For the rest of this book, we will be treating latches as
"black boxes" addressing only the inputs and how they affect Q.

The typical data storage latch is referred to as a data latch or a D
latch. There are slight variations between different implementations of
the D latch, but in general, every D latch uses the same basic inputs and
outputs. Figure 10-11 presents the block diagram of a fully
implemented D-latch.

Figure 10-11 Block Diagram of the D Latch

S

R

Q

Q

S R Q Q
0 0 U U
0 1 1 0
1 0 0 1
1 1 Q0 Q0

 S
D Q

 Q

R
Clock

S’ R’ Q Q’
0 0 U U
0 1 1 0
1 0 0 1
1 1 Q0 Q0’

14

Storage	 cells	
¢  Many	 different	 kinds	

§  Simple	 ones	 called	 ‘latches’	
§  Bigger,	 clocked	 ones	 called	 ‘flip-‐flops’	

¢  Maintain	 state/stored	 value	
§  Represented	 by	 Q	
§  Can	 transi*on	 between	 states	

§  Many	 conven*ons	
§  Previous/ini*al	 state:	 Q0,	 Qprev,	 Qt-‐	
§  Next	 state	 :	 Q,	 Qnext,	 Qt+	

¢  Can	 have	 undefined	 state	
§  Represented	 by	 U 	 	

15

Clocked	 storage	
¢  D	 flip-‐flop	

§  Has	 4	 inputs	 (Data,	 Set,	 Reset,	 Clock)	
§  Has	 2	 outputs	 (Q,	 Q’)	
§  Changes	 value	 on	 clock	 edge	

§  We	 will	 use	 rising	 edge	
D

Clk

Q

Q

S

R

D Clk Q Q’
X 0 Q0 Q0’
X 1 Q0 Q0’
X dn Q0 Q0’
0 up 0 1
1 up 1 0

16

Register	
¢  Stores	 binary	 values	

§  Several	 flip-‐flops	 grouped	 together	
§  Can	 store	 1	 bit	 for	 each	 flip-‐flop	

¢  Records	 new	 value	 on	 clock	 edge	
§  Can	 be	 controlled	 with	 write-‐enable	 bit	

¢  Allows	 values	 to	 be	 saved	 in	 CPU	
§  Results	 of	 calcula*ons	
§  Query	 results	 from	 memory	
§  Current	 execu*ng	 instruc*on	
§  ONen	 word	 sized	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	 	

� �

� �

�

�

���

�����

���������������������

�����

���

�������

 !�

Example	 16	 bit	 register	

17

16	 bit	 Register	 Internal	
¢  16	 D	 Flip-‐flops	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	 	

� �

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

�

��

���

� �

���

���

�

�

��

��

����

����

����

����

����

����

����

����

����

����

�����

�����

�����

�����

�����

����� �������

�������

����

����

����

����

����

����

����

����

����

����

�����

�����

�����

�����

�����

�����

�������

18

More	 registers	
¢  Useful	 to	 save	 several	 values	 at	 once	

§  Mul*ple	 register	 to	 hold	 values	

¢  Give	 each	 register/container	 an	 ID	
§  Probably	 a	 number	

¢  Useful	 to	 select	 specific	 register	
§  For	 reading	 or	 wri*ng	
	

19

Register	 File	
¢  Collec0on	 of	 registers	
¢  Method	 to	 select	 a	 single	 register	

§  Input	 read	 or	 write	 address	
¢  Read	 or	 write	 values	

§  Input	 write	 data,	 output	 read	 data	

¢  Basic	 storage	 unit	 for	 CPU	
§  Stores	 memory	 fetches	
§  Stores	 calcula*on	 results	
§  Programmer	 elects	 to	 read	 or	 write	 registers	
put 0xff, reg@2
store reg@3, mem@0xec
add 3, -5, reg@3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	 	

� �

� �

����������
���

������������

����

����	�������

 ���	�������

 �������������

20

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	 	

� �

� �

��

���

������

��

���

�������

��

���

�������

��

���

�������

��

���

�������

��

���

�������

��

���

�������

������������

��

�� �!

�� �!	""������

�#�

���

$%&��'�
	������

������

�������

�������

�������

�������

�������

�������

(�����

)������	������

������

�������

�������

�������

�������

�������

�������

*!�"����������

*!�"	""������

"!+�"!�'�

)�

)�

)�

)�

)�

)�

)�

)�

	�����

!��'�!

�

��

*

����*�

�,����- .,����-

�

��

*

����*�

�,����- .,����-

�

��

*

����*�

�,����- .,����-

�

��

*

����*�

�,����- .,����-

�

��

*

����*�

�,����- .,����-

�

��

*

����*�

�,����- .,����-

�

��

*

����*�

�,����- .,����-

��

���

�

��

*

����*�

�,����- .,����- 	������

Example	 8	
register	 file	

Decoder	 to	 select	 write	 target	

Mux	 to	 select	 read	 output	

21

Memory	
¢  Similar	 to	 a	 large	 register	 file	

§  Much	 larger	
§  ONen	 slower	

¢  Address	 selects	 byte	 to	 manipulate	
§  Read	 data	 at	 byte	 address	
§  Write	 data	 at	 byte	 address	

¢  Modern	 memory	
§  More	 complex	 model	
§  Hierarchy	 for	 read/write	
§  Read/writes	 word	 size	 chunks	

