Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

5 : Floating point
March 11, 2013

Today: Floating Point

m Background: Fractional binary numbers
m |[EEE floating point format

m Examples

m Basic conversion

m Properties

Fractional binary numbers

m Whatis 1011.101,?

Fractional Binary Numbers
2i
2i—1

4
2
1
bi |bia| e | b2 | b | bolb|ba|bs|ees|b.

m Representation 2]
= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number:
P Z bk X Qk

Fractional Binary Numbers

0 0 1 0 0 1 0) 1 bit
1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 | Place value
21 272 23 24 27 26 27 28 2" value

1/8 +1/64 + 1/256 = 32/256 + 4/256 + 1/256 = 37/256 =
0.14453125

m Each bit is a negative power of 2
= 21=1/2
= 22=1/22

Fractional Binary Numbers: Examples

m Value Representation
5 3/4 101.11;
2 7/8 10.111;
2 1/2 10.1>
3 1/4 11.01>

m Observations

= Divide by 2 by shifting right

= Multiply by 2 by shifting left

= Numbers of form 0.111111...; are just below 1.0
= 1/2+1/4+1/8+..+1/2'+..=> 1.0
= Use notation 1.0—¢

Representable Numbers

m Limitation
= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

m Value Representation
= 1/3 0.0101010101[01]...
= 1/5 0.001100110011[0011]...

= 1/10 0.0001100110011[0011]...2

Today: Floating Point

m Background: Fractional binary numbers
m |[EEE floating point format

m Examples

m Basic conversion

m Properties

IEEE Floating Point

m IEEE Standard 754
= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
® Nice standards for rounding, overflow, underflow
®" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard

Floating Point Representation

m Numerical Form:

(-1)sM 2F

= Sign bit s determines whether number is negative or positive

= Significand M normally a fractional value in range [1.0,2.0).

= Exponent E weights value by power of two

m Encoding
= MSB S is sign bit s

= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s [exp

frac

10

Precisions

m Single precision: 32 bits

S |exp frac

1 8-bits 23-bits
m Double precision: 64 bits

S |exp frac

1 11-bits 52-bits

m Also quad precision (128 bit) and half precision (16 bit)

1

Normalized Values

m Condition: exp #000...0 and exp # 111...1

m Exponent coded as biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bjas = 2¥1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.XXX...X2
" XXX..X: bits of frac
= Minimum when 000...0 (M = 1.0)
= Maximum when 111..1 (M =2.0-¢)
" Get extra leading bit for “free”

12

Normalized Encoding Example

m Value: Float F = 15213.0;
= 15213,, =11101101101101,
=1.1101101101101, x 213

m Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
m Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,
m Result:

Lojhmmummmmmmmmo_l

exp frac

13

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = —Bias + 1 (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2

" xxx..x: bits of frac

m Cases
" exp=000..9, frac =000..0
= Represents zero value
= Note distinct values: +0 and —0 (why?)
" exp =000..0, frac #000..0
= Numbers very close to 0.0
= Lose precision as get smaller
= Equispaced

14

Special Values

m Condition: exp=111..1

m Case: exp=111.1, frac =000..90

= Represents value @ (infinity)

= QOperation that overflows

= Both positive and negative

= E.g.,1.0/0.0=-1.0/-0.0 =+, 1.0/-0.0 = -0

m Case: exp=111..1, frac # 000...0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(—1), 0 -, 0 x 0

15

Visualization: Floating Point Encodings

—00 . _ +00
-Normalized (—Denorm ;+Denorm | +Normalized |

| | O/I\O | | ‘

Today: Floating Point

m Background: Fractional binary numbers
m |[EEE floating point format

m Examples

m Basic conversion

m Properties

17

Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation
® the sign bit is in the most significant bit
= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
® normalized, denormalized
= representation of 0, NaN, infinity

Dynamlc Range (Positive Only)

exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
numbers

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 o000 -6 8/8*1/64 = 8/512 smallest norm

0 0001 o001 -6 9/8*1/64 = 9/512

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 00O 0 8/8*1 =1
AT 925 0 0111 001 0 9/8*1 = 9/8 closest to 1 above

0 0111 o010 0 10/8*1 = 10/8

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240 |argestnorm

0 1111 o000 n/a inf

19

Distribution of Values

m 6-bit IEEE-like format

" e =3 exponent bits

= f =2 fraction bits S exp

" Biasis 23-1-1=3 1

frac

3-bits

2-bits

m Notice how the distribution gets denser toward zero.

/8 values

—k

-15

A

A
-10

-5 0

5

¢ Denormalized A Normalized

Infinity

A
10

A

A
15

20

Distribution of Values (close-up view)

m 6-bit IEEE-like format

" e =3 exponent bits
= f =2 fraction bits S exp frac

= Bjasis 3 1 3-bits 2-bits

hA—Ah— A A A A A 40060600606 A A A A Ah—A—A—A—A

-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

21

Interesting Numbers

Description exp
m Zero 00...00
m Smallest Pos. Denorm. 00...00

" Single=1.4x10™%

" Double = 4.9 x1073%

Largest Denormalized 00...00
" Single ~1.18 x 10738

" Double =2.2 x 107308

Smallest Pos. Normalized 00...01

= Just larger than largest denormalized
One 01..11
Largest Normalized 11...10
" Single =3.4x 1038

" Double = 1.8 x 10308

frac
00...
00...

11...

00...

00...
11...

00
01

11

00

00
11

{single, double}

Numeric Value

0.0
2-1{23,52} y 9-{126,1022}

(1.0 —€) x 2-{126,1022}

1.0x 2 {126,1022}

1.0
(2.0 —) x 21127,1023)

22

Today: Floating Point

m Background: Fractional binary numbers
m |[EEE floating point format

m Examples

m Basic conversion

m Properties

23

Conversion

m Decimal to float
= Write binary form

Normalize (if possible)

Write fractional part

= Round (covered tomorrow)

Compute exponent
= May be biased (normalized)
= May be denormalized
Werite sign bit

m Helpful single-precision values
= Bias: 127
= Bits:s=1, exp=8, frac=23

24

Conversion

m Float to decimal
" Compute exponent
= Normalized
= Denormalized

Normalize fractional part (if needed)

Compute fractional part
= Write in binary

Adjust binary point

Convert to decimal

Write sign

25

Today: Floating Point

m Background: Fractional binary numbers
m |[EEE floating point format

m Examples

m Basic conversion

m Properties

26

Special Properties of Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
® Must consider-0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized

= Normalized vs. infinity

Summary

m |[EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2¢

m One can reason about operations independent of
implementation

= As if computed with perfect precision and then rounded

m Not the same as real arithmetic
= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

28

