CSSE132 Introduction to Computer Systems

5 : Floating point

March 11, 2013

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point format
- Examples
- Basic conversion
- Properties

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Fractional Binary Numbers

0	0	1	0	0	1	0	1	bit
1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256	Place value
2 ⁻¹	2-2	2 -3	2-4	2 -5	2 -6	2 -7	2-8	2 ⁻ⁿ value

- Each bit is a negative power of 2
 - $-2^{-1} = 1/2$
 - $-2^{-2} = 1/2^2$
 - ..

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 101.11₂

2 7/8 10.111₂

2 1/2 10.1₂

3 1/4 11.012

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
 - **1/3** 0.01010101[01]...2
 - **1/5** 0.001100110011[0011]...2
 - **1/10** 0.0001100110011[0011]...2

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point format
- Examples
- Basic conversion
- Properties

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precisions

■ Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

■ Double precision: 64 bits

Also quad precision (128 bit) and half precision (16 bit)

Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - Exp: unsigned value exp
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (M = 2.0ϵ)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
■ Value: Float F = 15213.0;

■ 15213<sub>10</sub> = 11101101101101<sub>2</sub>

= 1.1101101101101<sub>2</sub> x 2<sup>13</sup>
```

Significand

```
M = 1.101101101_2
frac= 101101101101_000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - $\exp = 000...0$, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **■** Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point format
- Examples
- Basic conversion
- Properties

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers					
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 23-1-1 = 3

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
■ Smallest Pos. Denorm. ■ Single $\approx 1.4 \times 10^{-45}$ ■ Double $\approx 4.9 \times 10^{-324}$	0000	0001	2 ^{-{23,52}} x 2 ^{-{126,1022}}
 Largest Denormalized Single ≈ 1.18 x 10⁻³⁸ Double ≈ 2.2 x 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. NormalizedJust larger than largest denormalized	0001 nalized	0000	1.0 x 2 ^{-{126,1022}}
One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 x 10³⁸ 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point format
- Examples
- Basic conversion
- Properties

Conversion

- Decimal to float
 - Write binary form
 - Normalize (if possible)
 - Write fractional part
 - Round (covered tomorrow)
 - Compute exponent
 - May be biased (normalized)
 - May be denormalized
 - Write sign bit
- Helpful single-precision values
 - Bias: 127
 - Bits: s=1, exp=8, frac=23

Conversion

- Float to decimal
 - Compute exponent
 - Normalized
 - Denormalized
 - Normalize fractional part (if needed)
 - Compute fractional part
 - Write in binary
 - Adjust binary point
 - Convert to decimal
 - Write sign

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point format
- Examples
- Basic conversion
- Properties

Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers