Adapted from Carnegie Mellon 15-213

CSSE132
Introduction to Computer Systems

28 : System I/O
April 25,2013

Today

Unix I/O
RIO package

Standard I/O

H
H
m Metadata, sharing, and redirection
|
m Conclusions and examples

Unix Files

m A Unix file is a sequence of m bytes:
= B,B,,...,B,..,B

m-1

m All1/0 devices are represented as files:
" /dev/sda2 (/usr disk partition)
= /dev/tty2 (terminal)

m Even the kernel is represented as a file:
= /dev/kmem (kernel memory image)
= /proc (kernel data structures)

Unix File Types

Regular file
" File containing user/app data (binary, text, whatever)
= OS does not know anything about the format
= other than “sequence of bytes”, akin to main memory

Directory file
= A file that contains the names and locations of other files

Character special and block special files

= Terminals (character special) and disks (block special)
FIFO (named pipe)

= A file type used for inter-process communication

Socket
= A file type used for network communication between processes

Unix 1/0

m Key Features

= Elegant mapping of files to devices allows kernel to export simple
interface called Unix I/0O

" |mportant idea: All input and output is handled in a consistent and
uniform way
m Basic Unix I/O operations (system calls):
® QOpening and closing files
= open()andclose ()
= Reading and writing a file
= read () and write ()
® Changing the current file position (seek)
= indicates next offset into file to read or write
» 1seek ()

By [By|[®°° By.1| Bk |Bria|®®®

t

Current file position = k

Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open'") ;
exit(1l);

m Returns a small identifying integer file descriptor
"= fd == -1 indicates that an error occurred

m Each process created by a Unix shell begins life with three open
files associated with a terminal:

= (O:standard input
= 1:standard output
= 2:standard error

Closing Files

m Closing a file informs the kernel that you are finished
accessing that file

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit(1l);

m Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

m Moral: Always check return codes, even for seemingly
benign functions such as close ()

Reading Files

m Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];

int £d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit(1l);

m Returns number of bytes read from file £d into buf

" Returntype ssize tissigned integer
" nbytes < 0 indicates that an error occurred

= Short counts (nbytes < sizeof (buf))are possible and are not
errors!

Writing Files

m Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];

int fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit (1) ;

m Returns number of bytes written from buf to file £d

" nbytes < 0 indicates that an error occurred
= As with reads, short counts are possible and are not errors!

Simple Unix I/O example

m Copying standard in to standard out, one byte at a time

#include "csapp.h"

int main (void)

{

char c;
while (Read (STDIN FILENO, &c, 1) != 0)
Write(STDOUT_FILENO, &, 1) ;
exit (0) ;
} cpstdin.c

Note the use of error handling wrappers for read and write
(Appendix A).

10

Dealing with Short Counts

m Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets or Unix pipes

m Short counts never occur in these situations:
= Reading from disk files (except for EOF)
= Writing to disk files

m One way to deal with short counts in your code:

= Use the RIO (Robust 1/0) package from your textbook’s csapp.c
file (Appendix B)

1"

Today

Unix I/O

RIO package

Metadata, sharing, and redirection
Standard I/O

Conclusions and examples

12

The RIO Package

m RIO is a set of wrappers that provide efficient and robust 1/0
in apps, such as network programs that are subject to short
counts

m RIO provides two different kinds of functions
" Unbuffered input and output of binary data
* rio readnandrio writen
= Buffered input of binary data and text lines
* rio readlinebandrio readnb

= Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

m Download from http://csapp.cs.cmu.edu/public/code.html
- src/csapp.c and include/csapp.h

13

Unbuffered RIO Input and Output

m Same interface as Unix read and write
m Especially useful for transferring data on network sockets

#include "csapp.h"

ssize t rio readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

" rio readn returnsshort count only if it encounters EOF
= Only use it when you know how many bytes to read
" rio writen never returnsa short count

" Callstorio readnand rio_writen can be interleaved arbitrarily on
the same descriptor

14

Implementation of rio readn

/*
* rio readn - robustly read n bytes (unbuffered)
*/

ssize t rio readn(int fd, void *usrbuf, size t n)
{
size t nleft = n;
ssize_t nread;

char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;
}

return (n - nleft); /* return >= 0 */

if (errno == EINTR) /* interrupted by sig handler return */

csapp.cC

4

Buffered 1/0: Motivation

m Applications often read/write one character at a time
" getc, putc, ungetc
" gets, fgets
= Read line of text on character at a time, stopping at newline
m Implementing as Unix 1/0 calls expensive

" readandwrite require Unix kernel calls
= > 10,000 clock cycles

m Solution: Buffered read
= Use Unix read to grab block of bytes
= User input functions take one byte at a time from buffer
= Refill buffer when empty

Buffer | already read unread

16

Buffered 1/0: Implementation

m For reading from file

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

rio cnt —

Buffer

already read

unread

S

rio_buf

rio bufptr

m Layered on Unix file:

)

Buffered Portion

not in buffer

already read

unread

unseen

/‘

Current File Position

17

Buffered 1/0O: Declaration

m All information contained in struct

< rio cnt =

Buffer | already read unread

rio buf '/ j

rio bufptr

typedef struct ({

int rio fd; /* descriptor for this internal buf */
int rio cnt; /* unread bytes in internal buf */
char *rio bufptr; /* next unread byte in internal buf */

char rio buf[RIO BUFSIZE]; /* internal buffer */
} rio_t;

Buffered RIO Input Functions

m Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include "csapp.h"
void rio readinitb(rio t *rp, int £d);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_ t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readlineb reads atext line of up to maxlen bytes from file
fd and stores the line in usrbuf
= Especially useful for reading text lines from network sockets
= Stopping conditions
= maxlen bytes read
= EOF encountered
= Newline (‘\n’) encountered

19

Buffered RIO Input Functions (cont)

#include "csapp.h"
void rio_readinitb(rio_t *rp, int £d);

ssize_ t rio_readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize t rio readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readnb reads up to n bytes from file £d

= Stopping conditions
= maxlen bytesread
= EOF encountered

" Callstorio readlineband rio readnb can be interleaved
arbitrarily on the same descriptor

= Warning: Don’t interleave with callsto rio readn

RIO Example

m Copying the lines of a text file from standard input to

standard output

#include "csapp.h"

int main(int argc, char **argv)
{
int n;
rio t rio;
char buf [MAXLINE] ;

Rio readinitb(&rio, STDIN FILENO) ;

Rio writen (STDOUT FILENO, buf, n);
exit (0) ;

while((n = Rio readlineb(&rio, buf, MAXLINE)) !'= 0)

cpfile.c

21

Today

Unix I/O

RIO package

Metadata, sharing, and redirection
Standard 1/O

Conclusions and examples

22

File Metadata

m Metadata is data about data, in this case file data

m Per-file metadata maintained by kernel

= accessed by users with the stat and £stat functions

struct stat {

dev_t

ino_t

mode t
nlink t
uid t

gid t

dev_t

off t
unsigned long
unsigned long
time t

time t

time t

st _dev;

st _ino;

st mode;
st nlink;
st _uid;

st _gid;

st _rdev;
st size;
st blksize;
st _blocks;
st _atime;
st mtime;
st ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* Metadata returned by the stat and fstat functions */

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if inode device) */
total size, in bytes */
blocksize for filesystem I/O */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

23

Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

unix> ./statcheck statcheck.c

int main (int argc, char **argv) type: regular, read: yes
{ unix> chmod 000 statcheck.c
struct stat stat; unix> ./statcheck statcheck.c
char *type, *readok; type: regular, read: no
unix> ./statcheck
Stat (argv[1l], &stat); type: directory, read: yes
if (S_ISREG(stat.st mode)) unix> ./statcheck /dev/kmem
type = '"regular"; type: other, read: yes
else if (S_ISDIR(stat.st mode))
type = "directory";
else
type = "other";
if ((stat.st mode & S IRUSR)) /* OK to read?*/
readok = '"yes";
else
readok = "no";
printf ("type: %s, read: %s\n", type, readok);
exit (0) ;
} statcheck.c ”

Accessing Directories

m Only recommended operation on a directory: read its entries
" dirent structure contains information about a directory entry

= DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

if (! (directory = opendir (dir name)))
error ("Failed to open directory");

while (0 !'= (de = readdir (directory))) {
printf ("Found file: %s\n", de->d name) ;

}

closedir (directory) ;

How the Unix Kernel Represents Open Files

m Two descriptors referencing two distinct open disk files.
Descriptor 1 (stdout) points to terminal, and descriptor 4

points to open disk file

Descriptor table
[one table per process]

stdin fdO
stdout fd1
stderr fd2
fd 3
fd4

_File A (terminal)

Open file table
[shared by all processes]

T

—

File pos

refcnt=1

File B (disk)

v-node table
[shared by all processes]

»

File access

File size

File type

—

File pos

refcnt=1

File access

File size

File type

Info in
stat
struct

26

File Sharing

m Two distinct descriptors sharing the same disk file through
two distinct open file table entries

= E.g., Calling open twice with the same £filename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (disk)
stdin fdoO — File access
stdout fd1 . TP
File size
stderr fd2 File pos :
fd 3 refent=1 File type
fd 4 : :
/
File pos
refcnt=1

27

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
= Note: situation unchanged by exec functions (use £cntl to change)

m Before fork() call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

»

stdin fdoO = File access
stdout fd1 — File pos File size
stderr fd2 .
fd 3 refent=1 File type
fd 4 ~ : :
I File access
File pos File size
refcnt=1 File t.ype

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
m After fork():

® Child’s table same as parent’s, and +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent _File A (terminal) .
fd 0 / — File access
fd1 = File pos File size
fd 2 :
fd 3 refcnt=2 File type
fd 4 ~_ . -

child File B (disk) >

_— File access

fd 0 /| ——
fd1| 7 Filelpos File size
:: ; refcnt=2 File t.ype
fd4

/0O Redirection

m Question: How does a shell implement 1/0 redirection?

unix> ls > foo.txt

m Answer: By calling the dup2 (oldfd, newfd) function
= Copies (per-process) descriptor table entry o1ld£fd to entry newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2 (4,1)
fdo fd 0

fdl|a fdl|b

fd 2 fd 2

fd 3 fd 3

fdd | b fdd | b

30

/O Redirection Example

m Step #1: open file to which stdout should be redirected
"= Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A -
stdin fdoO = File access
stdout fd1 =] R . .
File size
stderr fd2 File pos :
fd 3 refent=1 File type
fd 4 ~_| : :
_ File access
File pos File size
refcnt=1 File t.ype

I/O Redirection Example (cont.)
m Step #2: call dup2 (4,1)

= cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A -
stdin fdoO — File access
stdout fd1 o . File si
ile size
stderr fd2 N File pos :
fd 3 refcnt=0 File type
fd 4 ~ : :
File B >
_ File access
. File size
File pos
refcnt=2 File t.ype

Fun with File Descriptors (1)

#include "csapp.h"

int main(int argc, char *argv[])

{
int £d1, £d4d2, £d3;
char cl, c2, c3;
char *fname = argv[1l];

fdl = Open(fname, O RDONLY, O);
fd2 = Open(fname, O RDONLY, O);
fd3 = Open(fname, O RDONLY, O);

Dup2 (fd2, £d3);

Read (£fdl, &cl, 1);
Read (£fd2, &c2, 1);
Read (£d3, &c3, 1);

return 0;

printf("cl = %c, ¢c2 = %c, ¢3 = %c\n", cl, c2, c3);

ffilesl.c

m What would this program print for file containing “abcde”?

33

Fun with File Descriptors (2)

#include "csapp.h"
int main(int argc, char *argv|[])
{
int £di;
int s = getpid() & O0x1;
char cl, c2;
char *fname = argv[l];
fdl = Open(fname, O RDONLY, O);
Read (fdl, &cl, 1);
if (fork()) { /* Parent */

sleep(s) ;

Read (£fdl, &c2, 1);

printf ("Parent: cl = %c, c2 = %c\n"
} else { /* Child */

sleep(1-s);

Read (fdl, &c2, 1);
printf ("Child: cl = %c, ¢c2 = %c\n",
}

return 0;

}

, cl, c2);

cl, c2);

ffiles2.c

m What would this program print for file containing “abcde”?

34

Fun with File Descriptors (3)

#include '"csapp.h"

int main(int argc, char *argv([])

{
int £d1, £d2, £d3;
char *fname = argv[1l];

Write (£d1l, "pqgrs", 4);

fd3 = Open(fname, O APPEND|O WRONLY, 0);
Write (£d3, "jklmn", 5);

fd2 = dup(fdl); /* Allocates descriptor */
Write (£d2, "wxyz", 4);

Write (£d3, "ef", 2);

return O;

fdl = Open (fname, O CREAT|O TRUNC|O RDWR, S_IRUSR|S_IWUSR) ;

ffiles3.c

m What would be the contents of the resulting file?

35

Today

Unix I/O

RIO package

Metadata, sharing, and redirection
Standard I/O

Conclusions and examples

36

Standard 1/0O Functions

m The Cstandard library (1ibc. so) contains a collection of
higher-level standard I/0 functions

= Documented in Appendix B of K&R.

m Examples of standard 1/0 functions:
= Opening and closing files (fopen and fclose)
= Reading and writing bytes (fread and fwrite)

= Reading and writing text lines (Egets and fputs)
® Formatted reading and writing (Escanf and fprintf)

37

Standard 1/0O Streams

m Standard I/O models open files as streams
= Abstraction for a file descriptor and a buffer in memory.
= Similar to buffered RIO

m C programs begin life with three open streams
(defined in stdio.h)
"= stdin (standard input)
= stdout (standard output)
" stderr (standard error)

#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

int main() {
fprintf (stdout,

}

/* standard input (descriptor 0) */
/* standard output (descriptor 1) */
/* standard error (descriptor 2) */

"Hello, world\n");

38

Buffering in Standard 1/0

m Standard I/O functions use buffered 1/0

printf ("h") ;

printf ("e") ;

printf ("1") ;

printf ("1") ;

printf ("o") ;

buf | printf ("\n") ;

hlell |l 1 ol\n

fflush (stdout) ;

write(1l, buf, 6);

m Buffer flushed to output fd on “\n” or ££1ush () call

39

Standard 1/0 Buffering in Action

m You can see this buffering in action for yourself, using the
always fascinating Unix strace program:

#include <stdio.h>

int main ()

{
printf ("h") ;
printf ("e") ;
printf ("1") ;
printf ("1") ;
printf("o") ;
printf ("\n") ;
fflush (stdout) ;
exit (0) ;

linux> strace ./hello

execve ("./hello", ["hello"], [/* ...

write(l, "hello\n", 6)

exit group (0)

*/1) .

I
o

I
V)

40

Today

Unix I/O

RIO package

Metadata, sharing, and redirection
Standard 1/O

Conclusions

4

Unix 1/0 vs. Standard 1/0O vs. RIO

m Standard I/0O and RIO are implemented using low-level
Unix 1I/0

fopen fdopen
fread fwrite
fscanf fprintf

sscanf sprintf |» C application program

fgets fputs \ rio readn

fflush fseek \ _ "
fclose Y Standard 1/0 RIO rio_writen

---» rio readinitb

functions functions

rio_readlineb
open read rio_readnb

_ Unix 1/0 functions
write lseek |«---- (accessed via system calls)
stat close y

m Which ones should you use in your programs?

Pros and Cons of Unix I/O

m Pros
= Unix I/O is the most general and lowest overhead form of 1/0.
= All other I/O packages are implemented using Unix |/O
functions.
= Unix I/O provides functions for accessing file metadata.

" Unix I/O functions are async-signal-safe and can be used safely in
signal handlers.

m Cons
= Dealing with short counts is tricky and error prone.
= Efficient reading of text lines requires some form of buffering, also
tricky and error prone.
= Both of these issues are addressed by the standard I/O and RIO
packages.

43

Pros and Cons of Standard 1/0

m Pros:
= Buffering increases efficiency by decreasing the number of read
and write system calls

= Short counts are handled automatically

m Cons:
" Provides no function for accessing file metadata
= Standard I/O functions are not async-signal-safe, and not
appropriate for signal handlers.
= Standard I/O is not appropriate for input and output on network
sockets

= There are poorly documented restrictions on streams that
interact badly with restrictions on sockets (CS:APP2e, Sec 10.9)

44

Choosing I/O Functions

General rule: use the highest-level 1/0 functions you can

= Many C programmers are able to do all of their work using the standard
|/O functions

When to use standard 1/O
= When working with disk or terminal files

When to use raw Unix 1/0
= |nside signal handlers, because Unix I/O is async-signal-safe.
" |nrare cases when you need absolute highest performance.
When to use RIO or similar libraries

" When you are reading and writing network sockets.
= Avoid using standard I/O on sockets.

45

