
Fall 2018-2019 CSSE 132

CSSE 132 – Introduction to Computer Systems
Rose-Hulman Institute of Technology

Computer Science and Software Engineering Department

ARM vs. C — Some examples

1 Simplified Examples

These examples assume all the variable data are stored in registers. This is not usually the case, but this
helps illustrate basic C structures.

1.1 main function

1 int main() {
2 int x = 13;
3 int y = 14;
4 return x + y;
5 }

1 main:
2 mov r2, #13
3 mov r3, #14
4 add r0, r2, r3
5 bx lr

1.2 if statement

1 x = 10;
2
3 if (x > 0) {
4
5 x = x - 1;
6 }

1 mov r3, #10 @ r3 holds ’x’
2 .BEGINIF:
3 cmp r3, #0
4 ble .ENDIF @ x>0 = !(x<=0)
5 sub r3, r3, #1
6 .ENDIF:

1.3 if/else statement

1 x = 10;
2
3 if (x > 0) {
4
5 x = x - 1;
6
7 } else {
8 x = x + 1;
9 }

1 mov r3, #10 @ r3 holds ’x’
2 .BEGINIF:
3 cmp r3, #0
4 ble .ELSE @ x>0 = !(x<=0)
5 sub r3, r3, #1
6 b .ENDIF
7 .ELSE:
8 add r3, r3, #1
9 .ENDIF:

25 September 2018 Page 1

Fall 2018-2019 CSSE 132

1.4 do/while loop

1 x = 10;
2 do {
3 x = x - 1;
4 while (x > 0);

1 mov r3, #10 @ r3 holds ’x’
2 .LOOP:
3 sub r3, r3, #1
4 cmp r3, #0
5 bgt .LOOP
6 .ENDLOOP:

1.5 while loop

1 x = 10;
2
3 while (x > 0) {
4
5 x = x - 1;
6 }

1 mov r3, #10 @ r3 holds ’x’
2 .LOOP:
3 cmp r3, #0
4 ble .ENDLOOP
5 sub r3, r3, #1
6 b .LOOP
7 .ENDLOOP:

There’s another way to compile the same while
loop. This way looks more like the do-while
translation to assembly:

1 mov r3, #10 @ r3 holds ’x’
2 b .TEST
3 .LOOP:
4 sub r3, r3, #1
5 .TEST:
6 cmp r3, #0
7 bgt .LOOP
8 .ENDLOOP:

1.6 for loop

There’s lots of extra space in this for loop. Usually you’d write the for statement like this:
for (x = 10; x > 0; x--) {...} but to better see how the bits of C map to ARM, spaces are added:

1 y = 0;
2 for (x = 10;
3
4 x > 0 ;
5
6 x--) {
7 y = y + x;
8 }

1 mov r2, #0 @ r2 holds ’y’
2 mov r3, #10 @ r3 holds ’x’
3 .LOOP:
4 cmp r3, #0
5 ble .ENDLOOP @ stop if !(x>0)
6 add r2, r2, r3 @ y=y+x
7 sub r3, r3, #1 @ x--
8 b .LOOP
9 .ENDLOOP:

25 September 2018 Page 2

Fall 2018-2019 CSSE 132

2 Load/Store Examples

These examples now assume variables are assigned a memory location. This means they are loaded and
stored as necessary.

2.1 set elements in array

Assume x is an array and its address is stored in r4:

1 x[0] = 40;
2
3
4 x[1] = 30;
5
6
7 x[2] = x[0] + x[1];

1 mov r0, #40
2 str r0, [r4] @ r4 is addr of x
3
4 mov r0, #30
5 str r0, [r4, #4]
6
7 ldr r0, [r4] @ x[0]
8 ldr r1, [r4, #4] @ x[1]
9 add r0, r0, r1 @ x[0]+x[1]
10 str r0, [r4, #8]

2.2 Local variables stored on the stack

When you declare variables in a C function, it makes space on the stack by moving sp, then assigns the
variables locations there (much like entries in an array). Notice that x = y; requires both a load from
memory and a store into memory since both variables are stored in memory!

In this example x, y and tmp are local variables stored on the stack:

1 void swap()
2 {
3
4 int x = 1;
5
6
7 int y = 16;
8
9
10 int tmp = x;
11
12
13 x = y;
14
15
16 y = tmp;
17
18
19 }

1 swap:
2 sub sp, sp, #12 @ make space
3
4 mov r3, #1
5 str r3, [sp, #0] @ x is sp+0
6
7 mov r3, #16
8 str r3, [sp, #4] @ y is sp+4
9
10 ldr r3, [sp, #0]
11 str r3, [sp, #8] @ tmp is sp+8
12
13 ldr r3, [sp, #4] @ put y into x
14 str r3, [sp, #0]
15
16 ldr r3, [sp, #8]
17 str r3, [sp, #4]
18
19 add sp, sp, #12 @ shrink stack
20 bx lr

25 September 2018 Page 3

