
 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 1 of 5

Introduction to Box-and-Pointer Diagrams
A Box-and-Pointer Diagram displays a snapshot of the variables and their values at a given
point of execution of a program.

For example, after the code below
executes:

the corresponding box-and-pointer
diagram is as shown to the right. (We will
work through the details of this and other
examples in this exercise.)

In this reading and the exercise that accompanies it, you will learn how to draw and read
box-and-pointer diagrams. Additionally, you will see how they clarify the following key ideas
(all of which you’ll examine in this exercise):

• Variables are REFERENCES to objects.

• Assignment (e.g. x = 100) causes a variable to refer to an object.

• Function calls (e.g. foo(54, x)) also cause variables to refer to objects.

• Some types of objects are mutable, which means that the “insides” of such an object
can be re-assigned. (We’ll be more explicit shortly.) Other types of objects are
immutable.

Objects, Variables and References
Recall that in Python, every piece of data is an object. Objects have a type (which
determines what the object can do and the types of data that the object contains/knows)
and a value.

Variables are REFERENCES to objects – we say that the variable refers to an object, or points
to an object, or is the name for an object (several ways to say the same thing, in this
context).

Some objects contain references to other objects; these objects are called containers. A
zg.Point is a container (as is any object of a user-defined class). Lists, strings and tuples are
containers. Numbers are not containers.

We will see that box-and-pointer diagrams help clarify what we mean by references.

x = 48
z = x
p1 = zg.Point(100, 150)

 Box and Pointer diagram:

48

100 150

x y ...

x

z

p1

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 2 of 5

How to Draw a Box-and-Pointer Diagram

Rule 1: Draw a NON-CONTAINER OBJECT by putting its value inside a box, as in these
examples:

Rule 2: Draw a VARIABLE using a box labeled with the variable’s name and with arrows
from the box to the object to which the variable currently refers.

For example, after this code executes:

the corresponding box-and-pointer diagram is as shown above and to the right.

Rule 3: Draw a CONTAINER OBJECT by
making a box for it, and then creating
sub-boxes that are drawn as if they were
variables, but with field names for fields
of an object and indices for items of a
sequence.

For example, after this code executes:

the corresponding box-and-pointer
diagram is as shown to the right. The
ellipsis (…) for the zg.Point object
reflects the fact that zg.Points have an
outline color, etc.

48 10.13 'h'

x = 48

 Box and Pointer diagram:

 48 x

True None

x = 48
p = zg.Point(100, 150)
numbers = [4, 30.2, 10]

 Box and Pointer diagram:

 48 x

100 150

x y ...

p

numbers

4 30.2 10

0 1 2

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 3 of 5

Re-assigning a variable
Recall that variables are REFERENCES to objects – we say that the variable refers to an object,
or points to an object, or is the name for an object (several ways to say the same thing, in
this context). Box-and-pointer diagrams help clarify what we mean by references, as in the
following example:

The box-and-pointer diagram on
the right shows the situation
after the code on the left runs.

If we now RE-assign the
variable x, as shown in the
example to the right, the
arrow out of the box for x
changes – it points to the new value for x.

Note that we put an through the old arrow to
indicate that the old arrow no longer exists.

We choose not to erase arrows (instead, we
them out) so that the diagram can show the history of the changes over time as the lines of
code execute.

(This continues on the next page.)

x = 48
 Box and Pointer diagram:

 48 x

x = x + 3 Box and Pointer diagram:

 48 x

51

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 4 of 5

Mutable objects
Some objects contain references to
other objects; these objects are called
containers. A zg.Point is a container
(as is any object of a user-defined
class). Lists, strings and tuples are
containers. Numbers are not
containers.

Here is an example showing
assignments of two container objects,
with the corresponding box-and-
pointer diagram shown to the right:

Suppose that we do RE-assignments of
the insides of the container objects, like
this:

The corresponding box-and-pointer
diagram is shown to the right. Note
that the arrows from p and numbers did
NOT change; rather, the arrows from
items “inside” the zg.Point and list
objects change.

This sort of assignment has a name – we
say that p and numbers were mutated.
That means that although they still
point to the same objects to which they
previously pointed, the insides of those
(container) objects have changed (i.e., point to new values).

 Box and Pointer diagram:

p = zg.Point(100, 150)
numbers = [4, 30.2, 10]

 Box and Pointer diagram:

 100 150

x y ...

p

numbers

4 30.2 10

0 1 2

p.x = 300
numbers[2] = number[0] + 31

100 150

x y ...

p

300

numbers

4 30.2 10

0 1 2

35

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 5 of 5

Mutable objects allow efficient use of time and space but are dangerous

Mutable objects are good because they allow for more efficient use of space and time:

Suppose that you have a container object that has thousands (or more) of items inside it.

• If the container object is mutable, you can change a single item inside the container
without changing the rest of the items inside the container.

• The alternative would be to copy the entire object, with its thousands (or more)
items, modifying the single item within as you do so, and use the copy (keeping the
original intact).

The alternative-to-mutation approach requires twice as much space as the mutation
approach, since you have to copy all the items in the container object. Additionally, there is
a cost in time since you must take the time to do all those copies.

Mutable objects are dangerous:

Suppose you send an immutable object (e.g. a number) to a function. When the function
returns, you are guaranteed that that object has not changed – good! But if you send a
mutable object to a function, there is no such guarantee – bad! For example, suppose that
the function (which someone else wrote) has a bug and it accidentally destroys part of the
object. Then your code might be completely correct, yet the program as a whole might have
a serious security flaw simply because of the faulty function.

Which objects are mutable and which objects are immutable?

1. Only container objects are (potentially) mutable. So numbers, which are NOT
containers, are immutable.

2. Python provides two general-purpose sequence types: lists and tuples. Both can
contain objects of any type. Their only difference (other than notation) is that:

• Lists are mutable.

• Tuples are immutable.

So, if you need the possibility of efficient use of space and time when the sequence
may change, use a list. But if you know the sequence will not change (maybe it is
used in a “read-only” form), or if you need the security of immutability (maybe it is a
life-critical application for which efficiency is not a factor), use a tuple.

3. Strings are immutable.

4. Any object of a user-defined class (e.g. zg.Point) is mutable.1

1 Exception: Classes that extend immutable-type classes like tuple will themselves be immutable-type classes.
We will not see such classes in this course.

