

CSSE 120 – Introduction to Software Development

Concept: Accumulating Sequences
This lesson puts together three concepts that you have seen:

• Sequences, for example lists and strings

• The + operator as concatenation

• The Accumulator Pattern (counting, summing, in graphics)

to allow you to accumulate (that is, “build up”) sequences.

Example 1 (lists):

The pattern for building up (accumulating) lists is (as shown in the
above example):

1. Before the loop, initialize the list variable (the “accumulator”)
to the empty list [].

2. Inside the loop, include a statement of the form:

 seq = seq + [new item to append to the sequence]

where seq is the list variable that you have chosen.

The + operator is concatenation (not addition) here since
the arguments are sequences (not numbers). Just as for the
summing pattern, it is critical to have the SAME variable on
each side of the assignment.

3. After the loop, use the (built-up) list as desired.

Note the similarity to the summing pattern.

Example 2 (strings):

Recall that the built-in function str returns a string version of its
argument, so the + operator is again concatenation (here, of
strings).

As the example shows, the pattern for strings is identical to the
pattern for lists; the difference is only that you must append strings to
strings (or lists to lists).

Note: The above technique for building up sequences is grossly
inefficient in its use of time and space, in that it repeatedly builds new
sequences instead of re-using space allocated once at the beginning.
When we (soon) study how to mutate sequences, we’ll see a better
technique.

seq = []
for k in range(10):
 seq = seq + [k ** 2]

print(seq)

prints [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

s = ''
for k in range(10):
 s = s + str(k ** 2)

print(s)

prints 0149162536496481

