
Page 1

CSSE 120 – Introduction to Software Development (Robotics section)

Concept: Sequences and Indexing
What is a sequence?

A sequence is a type of thing in Python that represents a finite, ordered collection of things
indexed by whole numbers. For example:

• A list: ['red', 'white', 'blue']

• A string:
 'Check out Joan Osborne, super musician'

• A tuple: (800, 400, 310)

There are also types for unordered collections, for example, sets and
dictionaries.

 Why are sequences important?

colors = ['red', 'white', 'blue']

colors[0] has value 'red'

colors[1] has value 'white'

colors[2] has value 'blue'

colors = ['red', 'white', 'blue', ...]

for k in range(len(colors)):

 circle = zg.Circle(...)

 circle.setFill(colors[k])

Be sure that you understand the use of the index k in the
above example. It is not a “magic” symbol; it is just an
ordinary variable that goes 0, 1, 2, ... per the range
statement. Do you see now why the range statement is
defined to start at 0 and ends one short of the value of its
argument?

Indexing starts at ZERO, not at one

The len function returns the
LENGTH of the sequence, that is, the

number of items in the sequence.

The number (or variable) inside the
square brackets is called the INDEX.

When you don’t need the index itself,
here is an alternative notation for
looping (iterating) through a sequence:

for color in colors:

 circle = zg.Circle(...)

 circle.setFill(color)

Lists, strings and tuples are
all sequences. Lists and tuples
can contain anything; strings
contain only characters. Tuples
act just like lists except tuples
are not mutable – we’ll talk
more about mutability later.

Sequences are powerful because they let you refer to an entire
collection, as well as the items in the collection, using a single name.

• You can still get to the items (aka elements) in the collection, by indexing:

• And you can loop (“iterate”) through the items in the collection,
as in this example that constructs circles with colors taken from a list.

Page 2

Note!

Accessing the last element of a sequence – avoid this gotcha
A common error when trying to refer to the last element of a sequence is to be off-by-one, as in
this example:

cool_words = ['aplomb', 'eviscerate', 'pataflafla', 'tmesis']

last_word = cool_words[3] # Correct!

last_word = cool_words[len(cool_words) - 1] # Correct!

last_word = cool_words[4] # WRONG!!!

last_word = cool_words[len(cool_words)] # WRONG!!!

The wrong statements above generate an error message:

IndexError: list index out of range

Different types of sequences: list, string, tuple and range
The sequence types that we will use most often are list, string (str) and tuple (and also range,
but we will use range only in for statements).

• A list can contain objects of any type and is mutable. Literals are written using square
brackets:

[45, 87.0, zg.Point(400, 30)]

• A tuple can also contain objects of any type, but is not mutable. Literals are written
using parentheses:

(45, 87.0, zg.Point(400, 30))

(57,)

• A string can contain only Unicode characters and is not
mutable. Literal strings are written using single or double
quotation marks (either is fine):

'hi there' "what’s up doc?"

We’ll discuss mutability in a
forthcoming session.

An example:
Here (on the right) is an
example that combines the
summing pattern with the
iterating-thru-a-sequence
pattern.

Notation for a SINGLE item in
a tuple. Also, for tuples with
more than one item you can

omit the parentheses.

def sum_all(sequence):
 """ Returns the sum of all the numbers in the
 given sequence. Precondition: The argument
 is a sequence containing only numbers.
 """
 total = 0
 for k in range(len(sequence)):
 total = total + sequence[k]

 return total

Cool words taken from:
www.vocabula.com/vrbestwords.asp

