Page 1

CSSE 120 - Introduction to Software Development (Robotics section)

Concept: Sequences and Indexing

What is a sequence?

A sequence is a type of thing in Python that represents a finite, ordered collection of things

indexed by whole numbers. For example:
e Alist: ["red”, “white", “blue”]

e Astring:

"Check out Joan Osborne, super musician- can contain anything; strings

e Atuple: (800, 400, 310)

There are also types for unordered collections, for example, sets and are not mutable — we'll talk

dictionaries.

Why are sequences important?

/Lists, strings and tuples are \
all sequences. Lists and tuples

contain only characters. Tuples
act just like lists except tuples

\more about mutability later. /

Sequences are powerful because they let you refer to an entire
collection, as well as the items in the collection, using a single name.

e You can still get to the items (aka elements) in the collection, by indexing:

colors = ['red’, 'white', 'blue']
colors[Q] has value 'red’
colors[1] has value 'white’

colors[2] has value 'blue’

[Indexing starts at ZERO, not at one]

The number (or variable) inside the
square brackets is called the INDEX.

e And you can loop (“iterate”) through the items in the collection,
as in this example that constructs circles with colors taken from a list.

ool

colors = [‘'red’, 'white', 'blue’,

for k in range(len(colors)):
circle = zg.Circle(...)
circle.setFill(colors[k])

Be sure that you understand the use of the index k in the

Il\ above example. It is not a “magic” symbol; it is just an

ordinary variable that goes @, 1, 2, ... perthe range
statement. Do you see now why the range statement is
defined to start at @ and ends one short of the value of its
argument?

\
The len function returns the

LENGTH of the sequence, that is, the
number of items in the sequence.

/\Nhen you don’t need the index itself,
here is an alternative notation for
looping (iterating) through a sequence:
for color in colors:

circle = zg.Circle(...)

circle.setFill(color) j

(¥

Page 2

Accessing the last element of a sequence — avoid this gotcha

A common error when trying to refer to the last element of a sequence is to be off-by-one, as in

;l\ this example:
8 'pataflafla’,

cool_words = [‘aplomb', 'eviscerate', "tmesis ']
Note!

last_word = cool_words[3] Z # Correct!

last_word = cool_words[len(cool_words) - 1] # Correct!

last_word = cool_words[4] # WRONG!!!

last_word = cool_words[len(cool_words)] # WRONG!!!

The wrong statements above generate an error message: Cool words taken from:

IndexError: list index out of range www.vocabula.com/vrbestwords.asp

Different types of sequences: list, string, tuple and range

The sequence types that we will use most often are list, string (str) and tuple (and also range,
but we will use range only in for statements).

e A list can contain objects of any type and is mutable. Literals are written using square
brackets:
[45, 87.0, zg.-Point(400, 30)]
e A tuple can also contain objects of any type, but is not mutable. Literals are written
using parentheses:

(45, 87.0, zg.Point(400, 30))

Notation for a SINGLE item in
a tuple. Also, for tuples with

57, € .
() more than one item you can
e Astring can contain only Unicode characters and is not omit the parentheses.
mutable. Literal strings are written using single or double _ Y,

guotation marks (either is fine):

"hi there- "what’s up doc?"

We’'ll discuss mutability in a
forthcoming session. def sum_all(sequence):

mmn

Returns the sum of all the numbers in the

given sequence. Precondition: The argument
An example:

1S a sequence containing only numbers.
Here (on the right) is an I

example that combines the

summing pattern with the total = @
iterating-thru-a-sequence for k in range(len(sequence)):
pattern. total = total + sequence[k]

return total

