
Why are Classes useful?
• A class provides a way to bundle/organize data and actions under a single name.

Data is stored in instance variables and actions are specified by methods.

• A class specifies a type of thing, from which we can produce multiple instances. All
instances have the same form (i.e., same names for instance variables and
methods), but each has its own data.

As such, a class is like int or float, but the programmer gets to specify the type of
data and what can be done with it.

Functions are important in part because we can call them with different arguments
to get different results. Classes extend that idea to include objects with different
data, as well as methods that can be called with different arguments.

• Designing solutions to problems by thinking about the types of things needed for
the solution, and the relationships between those types of things, is fundamental to
object-oriented design.

Implementing Classes – Key Concepts

class Blah(object):

 def __init__(self, whatever, ...):
 self.whatever = whatever
 self.xxx = ...

 def foo(self, ...):
 ... self.whatever ...

 ...

What is the syntax (notation)
for implementing a class?

Name of class –
always starts with
upper-case letter

Indicates a class
definition (as

opposed to def
for a function

definition)

What the class “inherits” from
– for now, always object

(the most basic class)

The constructor
method. Always

named __init__.
Called when an
instance of the

class is
constructed, e.g.:
b = Blah(...)

Other methods. Just like functions, except the first parameter is always self.
(“Class” methods are an exception, but we won’t discuss them in this course.)

Instance variables.
They always begin

with self.

class Point(object):
 def __init__(self, x, y):
 self.x = x
 self.y = y
 self.number_of_moves = 0

Why is the __init__ method special?

Causes the Point class’
__init__ method to

be called, with:

x = 100
y = 50
self = the Point
being constructed

Then sets p1 to that

Point. Causes the Point class’ __init__
method to be called, with:

x = 77
y = 33
self = the Point being constructed

Then sets p2 to that Point.

def main():
 p1 = Point(100, 50)
 p2 = Point(77, 33)

class Point(object):
 def __init__(self, x, y):
 self.x = x
 self.y = y
 self.number_of_moves = 0

 def move_by(self, dx, dy):
 self.x = self.x + dx
 self.y = self.y + dy

What is self?
Answer: It is set to

the thing before the
dot when a method of

the class is called.

def main():
 p1 = Point(100, 50)
 p2 = Point(77, 33)
 p1.move_by(20, 30)
 p2.move_by(11, 22)
 p1.move_by(1, 1)

It is the same p1 all 3 times.
So the one and only p1 is set to (100, 50),

then moves to (120, 80), then moves to
(121, 81) in this code snippet.

self = p1 in the call to __init__
self = p1 in the call to move_by
self = p1 in the call to move_by

self = p2 in the
other two statements.

So the one and only p2
is set to (77, 33) and

moves to (88, 55).

class Point(object):
 def __init__(self, x, y):
 self.x = x
 self.y = y

self = p1
in this call to __init__.

So self.x = 100

in __init__
means that

p1.x in main
is set to 100.

What is self.blah? Answer: It is the
blah instance variable for the thing before the dot.

def main():
 p1 = Point(100, 50)
 p2 = Point(77, 33)
 x1 = p1.x
 x2 = p2.x

self = p2 in this call to __init__.
So self.x = 77 in __init__

means that
p2.x in main is set to 77.

class Point(object):
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def get_distance_from(self, p2):
 ...

 def get_distance_from_start(self):
 start_point = ...
 return self.distance_from(start_point)

What is
self.blah()?

[Note the parentheses]

def main():
 p1 = Point(100, 50)
 ...
 d = p1.get_distance_from_start()

Answer: It is the blah
method applied to the thing
before the dot, and is used

to call one method from
within another method.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

