
Python’s range expression

Recall that a range expression
generates integers that can be
used in a FOR loop, like this:

In that example, k takes on the
values 0, 1, 2, ... n-1, as the loop runs. That is:

Python allows two other forms of the range expression, for your
convenience. You never have to use these forms (the single-
argument form is sufficient), but they are often handy.

For example, the loop shown below to the left generates the output
shown below to the right.

Caution: range(m, n) generates NO integers if n  m. For
example, the loop for k in range(9, 5): runs NO times:

The third form of the range expression works like this:

For example, the loops below generate the output shown to the right.

Caution: In all three forms, the generated numbers start at the
first number and stop just before reaching the “stop” number:

 for k in range(30): does not include 30

 for k in range(3, 56): does not include 56

 for k in range(10, 40, 5): does not include 40

for k in range(40, 10, -5): does not include 10

So the example to the right does
NOT generate 5, 4, 3, 2, 1, 0, as
the student hoped. (Figure out
why and then look at the next page.)

for k in range(n):

 ... k ...

for k in range(5, 9):

 print(k)

5
6
7
8

for k in range(5, 11, 2):

 print(k)

5
7
9

range(n) generates n integers starting at 0
 (and hence ending at n-1).

range(m, n) generates integers starting at m,
 ending at n-1 (and hence

 generates n-m integers if n  m).

range(m, n, j) generates integers starting at m,
 in “steps” of j,
stopping when the generated integer would be greater than
or equal to n (if j is positive) or when the generated integer
would be less than or equal to n (if j is negative).

(no output)
for k in range(9, 5):

 print(k)

for k in range(8, 3, -1):

 print(k)

8
7
6
5
4

for k in range(5, 0, -1):

 print(k)

Answer: the loop to the right
stops just before it reaches 0,
so it generates 5, 4, 3, 2, 1
(which may or may not be
what you intend).

Another common error is to write this,
which runs NO times, when you
meant to write this:

Or, similarly, to write this
when you meant the 3-argument
expression (with a negative step),
as above.

The arguments in a range
expression must be integers.
So yet another common
mistake is to write this
when the following is necessary
even if the argument n is even.

Summary:

Don’t hesitate to use the two and three-argument forms when they
clarify the code, but be aware of the pitfalls that may arise.

for k in range(5, 0, -1):

 print(k)

for k in range(0, 5, -1):

 ... k ...

for k in range(5, 0, -1):

 ... k ...

range(m, n) generates integers starting at m,
 ending at n-1 (and hence
 generates n-m integers if n  m).

range(m, n, j) generates integers starting at m,
 in “steps” of j,
stopping when the generated integer would be greater than
or equal to n (if j is positive) or when the generated integer
would be less than or equal to n (if j is negative).

range(n) generates n integers starting at 0
 (and hence ending at n-1).

for k in range(n / 2):

 ... k ...

for k in range(n // 2):

 ... k ...

for k in range(5, 0):

 ... k ...

