Python’s range expression The third form of the range expression works like this:

Recall thata range expression
generates integers that can be for k in range(n): range(m, n, j) generates integers starting atm,

used ina FOR loop, like this: el k in “steps” of 7,
Tttt stopping when the generated integer would be greater than

or equal to n (if j is positive) or when the generated integer
would be less than or equal to n (if 7 is negative).

In that example, R takes on the
values@, 1, 2, ... n-1,6astheloop runs. Thatis:

range(n) generates n integers starting at @

(and hence ending at n-1). For example, the loops below generate the output shown to the right.

. 5
for k in range(5, 11, 2):
Python allows two other forms of the range expression, for your it (K > 7
convenience. You never have to use these forms (the single- print(k) 9
argument form is sufficient), but they are often handy.
. . 8
range(m, n) generates integers starting at m, 5
ending at n-1 (and hence for k in range(8, 3, -1): I 6
generates n-mintegers if n > m). print (k) 5
4
For example, the loop shown below to the left generates the output

shown below to the right.

Caution: In all three forms, the generated numbers start at the

for k in range(5, 9): : first number and stop just before reaching the “stop” number:
. 7 for k in range(390): does not include 30
print(k) 8
for k in range(3, 56): does not include 56

for k in range(10, 40, 5): does not include 40
g-"é Caution: range(m, n) generates NO integers ifn < m. For

example, the loop for k in range(9, 5): runs NO times: for k in range(40, 10, -5):does not include 10

So the example to the right does for k in range(5, 0, -1):
for k in range(9, 5):) (no output) NOT generate 5, 4, 3, ?, 1,0, as print (k)

print (k) the student hoped. (Figure out
why and then look at the next page.)

Answer: the loop to the right
stops just before it reaches 0,
soit generates 5, 4, 3, 2,1
(which may or may not be
what you intend).

for k in range(5, 0,
print(k)

Another common error is to write th15’7

which runs NO times, when you
meant to write this:

-For' k in range(9, 5, -1):

for k in range(5, 0, -1):
oo koL

for k in range(5, 0):

Or, similarly, to write this /

when you meant the 3-argument
expression (with a negative step),
as above.

The arguments in a range
expression must be integers. for k in range(n / 2):

So yet another common k x
mistake is to write this

when the following is necessary
even if the argument n is even.

for k in range(n // 2):
oo koL

Summary:

range(n)

generates n integers starting at @
(and hence ending at n-1).

range(m, n) generates integers starting at m,
ending at n-1 (and hence

generates n-mintegers if n 2 m).

range(m, n, j) generates integers starting atm,

in “steps” of 7,

stopping when the generated integer would be greater than
or equal to n (if j is positive) or when the generated integer

would be less than or equal to n (if j is negative).

Don’t hesitate to use the two and three-argument forms when they
clarify the code, but be aware of the pitfalls that may arise.

