
Page 1

The PyDev Console, by Pictures
Here’s an introduction to the PyDev Console, by pictures. It assumes that you are in Eclipse and in the
PyDev120 (or PyDev) perspective. If not, your mileage will vary.
Follow the pictures (and associated
instructions), one by one. Turn to a
neighbor or an assistant quickly
whenever you get a bit lost – most of
this is much easier to show than to
explain.

The PyDev Console lets you
type and run Python
commands (aka statements),
one at a time.
1. Your window should look like

this, except perhaps for the
window sizes.

• I kept my window small
only to make it fit better
in these instructions.
You’ll want your Eclipse
window maximized.

2. Open a PyDev Console, as
shown in the next several
pictures (all of which are
blow-ups of parts of the
above picture, near the
upper-right corner).

Start with the pull-down
arrow that brings up an
Open Console pop-up if you hover. It’s tricky to locate, ask
someone to show you).

From the pull-down menu, you select

PyDev Console

and then in the dialog box that pops up:

Python console

The result should be something like the picture below.

Page 2

3. This window, with the green triple arrows >>>, is a PyDev Console. Use it whenever you want to try
out a single command (aka statement).

For now, try typing some arithmetic
(the picture to the right shows 2 + 2) at
the triple green arrows and press Enter.

Once you do so – congratulations! You
have successfully executed your first
Python command (aka statement)

4. Do a few more arithmetic expressions, until you feel comfortable with
arithmetic in the PyDev Console. Choose your own numbers, including
some with decimal points (which we call floating point numbers, or
simply floats); the example to the right is just a guide. Can you make a
very, very large number show up as the result of a calculation?

5. Now let’s try strings – sequences of characters.
Try typing some word (whatever word you
want) in double quotes, in single quotes and
with no quotes. You should see something
similar to the picture to the right.

Pause for a moment to think briefly about what
the last line of that error message might mean:

NameError: name 'hello' is not defined

What’s a name? Can you guess?

6. We’ll talk lots more about names (aka variables)
in the next few sessions. For now, take a quick
look at the picture to the right to see how you
can define names to have values: the name
hello is given the integer value 54
and the name greeting is given the string
value 'hello'.

If you have time, try some string “arithmetic” as
shown to the right, with your own strings and
numbers. Don’t hesitate to ask an assistant or a
neighbor questions. This is just play time!

String arithmetic

Page 3

7. Last concept for now: You can
call functions somewhat like
you do in math class. Try
statements like the ones to the
right, including the two that
yield error messages.

Next session, we’ll talk more
about the need to import the
math module and why we need
to write math.sin instead of
just sin.

Do try to notice that when you
type

math.

(note the DOT) and then PAUSE
for a second or two, a pop-up
window shows you all the
functions in the math module. Cool, no?!

8. Finally, some functions are built-in. The abs
function shown to the right is one such.

You don’t have to import the built-in’s or precede
those functions with the name builtins and a dot,
but you can if you wish. So really, built-ins are
much like functions in other modules.

