
Page 1

CSSE 120 Final Exam – What to expect
Spring, 2012-2013

Time: You have 4 hours to complete the exam – no time
extensions without prior approval.

External resources allowed (same as Test 2, except includes a
“cheat sheet” for the Paper-and-Pencil part):

• There is a Paper-And-Pencil part. For this part, the only
external resource you may use is a single 8½ by 11 sheet of
paper, with whatever you want on it. You may use BOTH sides
of the sheet.

• There is an On-The-Computer part. For this part, the only
external resources you may use are:

o Your computer and anything on it.

o Your SVN repositories (your own and any whose
ownership you share with teammates or partners).

o Any directly reachable from the CSSE 120 web site.

You may NOT use any search engine – no googling.

For both parts of the exam, you must not communicate with
anyone except your instructor and his assistants at the exam, if
any.

Languages: Both Python and C are featured in compare-and-
contrast problems on the paper-and-pencil part of the exam. See
details below. The on-the-computer part is entirely in C.

For the Paper-And-Pencil portion of the final exam, you should be
able to:

1. Trace C code, especially code that includes pointers, and:

a. Draw the box-and-pointer diagram appropriate to the
code’s execution, and

b. Show what gets printed by printf statements during the
code’s execution.

2. Compare and contrast C and Python. In particular, you should
be able to explain how the following are similar and how they
are different, giving examples to support your explanations:

a. Arrays (in C) and lists (in Python)

b. (Static) types in C and (dynamic) types in Python

c. Explicit pointers in C and implicit references in Python

d. Execution of a program in C (using code produced by a
compiler) and execution of a program in Python (using
an interpreter)

e. C-style strings (in C) and strings (in Python)

f. Structures (in C) and classes (in Python)

g. Characters (in C) and characters (in Python)

h. Blocks in C and blocks in Python

i. Doing input/output in C (scanf /printf) and in
Python (input/print).

3. List several features that an application might require that
would make you choose C (as opposed to Python) as the
language in which to implement the application.

Page 2

4. List several features that an application might require that

would make you choose Python (as opposed to C) as the
language in which to implement the application.

5. Explain what happens in C when a program crashes, and what
happens in Python when a program crashes. Which language
provides more help when a crash occurs? Explain.

6. Explain what happens in C if a program accesses an array
beyond its bounds, and what happens in Python if a program
accesses a list beyond its bounds.

7. In C, which of the following can happen when you reference an
array out of bounds? (Choose all that apply.)

a. The program might print a meaningful error message at
run time.

b. The program might crash at that point.

c. The program might crash at a subsequent point (as a
direct result of this error, not another error).

d. A different variable in the program might have its value
changed (by the array reference out of bounds).

e. The program might run but give incorrect behavior (as a
direct result of this error, not another error).

f. The program might run to completion without any
wrong behavior.

8. Repeat the previous question (with the same options), but with
the mistake being an incorrect use of a pointer variable.

9. Why are pointers valuable in C? Give two different reasons.

10. Explain the difference between static memory allocation (from
the stack) and dynamic memory allocation (from the heap,
using malloc or realloc). Also explain how each of these
work, and the notation for each.

11. What is the free operation in C accomplish? Why is it
important? What happens if you fail to use free?

12. Explain the relationship between arrays and pointers.

13. Explain (statement by statement) what each of the following
statements mean in C:

float a, b;

float* x;

float* y;

x = &a;

*x = 45;

y = x;

14. Consider the following statement, where x and y are lists (in
Python) or arrays (in C) (and where the C statement would
have a semi-colon at the end of it):

x = y

This works fine in Python but does not compile in C. Explain
what it means in Python and why it does not compile in C.

15. Which are generally easier to debug: programs in Python or
programs in C? Explain your answer with some concrete
examples.

Page 3

For the On-The-Computer, in C, portion of the final exam, you
should be able to do the following in C:

1. Implement input and output (using scanf and printf on the
types int, float, double, and char and on C-style strings).

2. Use function definitions, function calls, assignment,
conditionals and loops at a level of maturity similar to what we
expected in Python.

3. Write function prototypes.

4. Implement functions that use nested loops to display 2-
dimensional patterns on the console (like those that we did
many exercises on, in Python and in C)

5. Declare arrays and use them successfully in function calls and
as parameters of functions. In particular, you should be able to
apply the following array patterns (as well as variations and
combinations of them):

a. Accessing the kth element of the array, for a given k.

b. Printing (or otherwise processing) all the values of an
array, from beginning to end.

c. Printing (or otherwise processing) all the values of an
array, backwards, or using only a portion of the array.

d. Counting the number of elements in the array that
meet a given condition.

e. Summing the elements in an array of numbers, perhaps
just those that meet a given condition.

f. Finding the largest (or smallest) number in an array of
numbers.

g. Finding a given element in an array, or an element that
meets a given condition (and returning its position in
the array).

h. Initializing the elements of an array to:

i. Random or pre-specified values.

ii. Values that are a function of the index.

iii. Values input by the user, asking the user how
big the array should be.

iv. Values input by the user with a sentinel loop.

i. Patterns that refer to another element while processing
the current element, e.g. determining whether an array
is:

i. Sorted from smallest to largest.

ii. A palindrome.

j. Loop-within-a-loop array patterns, e.g. printing (or
otherwise processing) all the values of a two-
dimensional array.

6. Declare instances of a given structure and use those instances
successfully, including accessing their fields.

7. Use arrays of structures, or structures that contain arrays.

8. Declare and use pointer variables, in particular to:

a. “Send back” multiple values from a function (by using
parameters that are pointers to variables in the caller).

b. Send an array to a function and use the array as a
parameter.

9. Declare and use C-style strings, explicitly and via string
functions in the string.h library.

This term we did not do two-dimensional arrays, so you are NOT
responsible for them.

