
 Arrays Page 1

Array Patterns: Here are some common patterns that use arrays. In all the examples,

assume that the array is called blah; that it has length given by the variable length; and that the
array holds numbers, except where indicated.

Follow the link to go straight to that pattern.

1. Accessing the kth element of the array,
for a given k.

2. Printing (or otherwise processing) all the
values of an array, from beginning to
end.

3. Printing (or otherwise processing) all the
values of an array, backwards.

4. Counting the number of elements in the
array that meet a given condition.

5. Summing the elements in an array of
numbers.

6. Finding the largest (or smallest) number
in an array of numbers.

7. Finding a given element in an array, or
an element that meets a given
condition.

8. Initializing the elements of an array:

a. Initializing the elements of an
array to random values.

b. Initializing the elements of an
array to values that are a
function of the index.

c. Initializing the elements of an
array to values input by the user
(or from a file), asking the user
how big the array should be.

d. Initializing the elements of an
array to values input by the user
(or from a file), with a sentinel
loop.

9. Patterns that refer to another element
while processing the current element,
e.g.:

a. Determining whether an array is
sorted from smallest to largest.

b. Determining whether an array is
a palindrome.

10. Loop-within-a-loop array patterns, e.g.:

a. Printing (or otherwise
processing) all the values of a
two-dimensional array.

b. Selection sort.

11. The sort-first pattern, e.g.:

a. Finding the median value of an
array.

b. Binary search.

12. The “histogram pattern” for counting
the occurrences of “events”, e.g. to find
the mode (most common number) of an
array.

13. Using a pointer to simulate an array.

 Arrays Page 2

1. Accessing the kth element of the array, for a given k. Just use:

No loop is necessary to access this single element.

2. Printing (or otherwise processing) all the values of an array, from beginning to end.

Many of the following patterns are special cases or variations of this general “processing”
pattern.

3. Printing (or otherwise processing) all the values of an array, backwards.

blah[k]

int k;

for (k = 0; k < length; ++k) {

 ... blah[k] ...

}

Must begin at 0.
Must be < (not <=).

Equivalent to: k = k + 1;

int k;

for (k = length - 1; k >= 0; --k) {

 ... blah[k] ...

}

The index of the last element in the array.

Must be >= (not <=).

Equivalent to: k = k - 1;

 Arrays Page 3

4. Counting the number of elements in the array that meet a given condition.

5. Summing the elements in an array of numbers.

To sum just the elements that meet a given condition, use an if as in the counting example
above.

int k;

int count;

count = 0;

for (k = 0; k < length; ++k) {

 if (blah[k] >= 5 && blah[k] <= 8) {

 ++ count;

 }

}

... count ...

The condition (what is inside the if clause)
will vary from problem to problem. This
example counts the number of elements in
the array that are between 5 and 8, inclusive.

Don’t forget to start the count variable at 0.

int k;

double sum;

sum = 0;

for (k = 0; k < length; ++k) {

 sum += blah[k];

}

... sum ...

After the loop concludes, the count
variable contains the number of elements
in the array that met the condition.

Don’t forget to start the sum variable at 0.

If you are summing integers, the type of sum
should be int, not double.

Equivalent to: sum = sum + blah[k];

After the loop concludes, the sum variable
contains the sum of the numbers in the array.

 Arrays Page 4

6. Finding the largest (or smallest) number in an array of numbers.

Change the > to < to find the smallest number in the array.

If it is possible that the array has no elements, you’ll need to make a
special check for that. Also, modifications are necessary if you want
the indices of all the largest elements (including ties).

7. Finding a given element in an array, or an element that meets a given condition.

Modifications are necessary if you want the
indices of all the elements that meet the given condition. Binary search is a much faster
method for finding a given element in an array if the array is already sorted.

int k;

int indexOfLargest = 0;

for (k = 1; k < length; ++k) {

 if (blah[k] > blah[indexOfLargest]) {

 indexOfLargest = k;

}

... blah[indexOfLargest] ...

If the element at index k is bigger than the
largest number found so far, then change
the index of the largest number found so
far to k.

Start by assuming that the index of the largest
element in the array is element 0. Then the
loop that follows can start at 1 instead of at 0.

After the loop concludes, the
indexOfLargest variable
contains the index of the
largest number in the array.

int k;

int indexOfElement = -1;

for (k = 0; k < length; ++k) {

 if (blah[k] == whatYouAreLookingFor) {

 indexOfElement = k;

 break;

 }

}

if (indexOfElement == -1) {

 ...

} else {

 ... indexOfElement ...

}

Start by setting indexOfElement
to an impossible value.

The condition (what is inside the if clause) will vary
from problem to problem. This example finds the
first element that equals whatYouAreLookingFor.

Break out
of the loop
if you find
what you
want.

After the loop concludes, if indexOfElement is
still -1, then the array does not contain an
element that meets the given condition. Do
whatever the problem calls for in that case.

Otherwise, indexOfElement is the index of the first
element in the array that meets the given condition.
Do whatever the problem calls for in that case.

http://en.wikipedia.org/wiki/Binary_search_algorithm

 Arrays Page 5

8. Initializing the elements of an array

a. Initializing the elements of an
array to random values.

For example,
you can set all the values of a
dieRolls array to random values
between 1 and 6, as in the
example to the right:

b. Initializing the elements of an
array to values that are a function
of the index.

For example, you can set the kth entry
of a squares array to k2, as in the example
to the right:

c. Initializing the elements of an array to values input by the user (or from a file),
asking the user how big the array should be.

int k;

int length = 1000;

int dieRolls[length];

for (k = 0; k < length; ++k) {

 dieRolls[k] = 1 + rand() % 6;

}

int k;

int length = 400;

int squares[length];

for (k = 0; k < length; ++k) {

 squares[k] = k * k;

}

int length, k;

printf("How many temperatures will you enter? ");

fflush(stdout);

scanf("%i", &length);

double temperatures[length];

for (k = 0; k < length; ++k) {

 printf("Enter a temperature: ");

 fflush(stdout);

 scanf("%lf", &(temperatures[k]));

}

This statement cannot be placed
earlier in the code – it must appear
only after the variable length has
been assigned a meaningful value.

 Arrays Page 6

d. Initializing the elements of an array to values input by the user (or from a file),
with a sentinel loop.

This version of this pattern chooses an array length that the programmer hopes will
be “big enough” in practice. This is not a very robust solution! A better (but more
complicated) solution would be to use pointers to simulate the array and
dynamically (i.e., at run-time) “grow” the array as needed using malloc or realloc –
see How to Use Pointers to Save Time and Space.

int k, arrayLength, actualLength;

arrayLength = 100;

double numbers[arrayLength];

double number;

actualLength = 0;

while (1) {

 printf("Enter a floating-point number: ");

 fflush(stdout);

 scanf("%lf", &number);

 if (number < -10000) { // Sentinel reached, stop input

 break;

 }

 if (actualLength == arrayLength) { // Array length reached, stop input

 printf("Sorry, I cannot hold more than %i numbers.\n", arrayLength);

 break;

 }

 numbers[actualLength] = number;

 ++ actualLength;

}

In this pattern, you don’t know in advance
how many numbers the user will input.
So, your only choice is to pick an array
size that you think will be big enough –
100 in this example.

In this example, the sentinel input (that is,
the special input by which the user
indicates that she is finished inputting
numbers) is any number less than 10,000.

After breaking out of the loop, the array
contains the numbers that the user
inputted. The variable actualLength
holds the number of inputs, hence is
treated as the length of the array in the
subsequent code.

../UsingPointersToSaveTimeAndSpace/

 Arrays Page 7

9. Patterns that refer to another element while processing the current element.

The pattern above for “finding the largest (or smallest) number in an array of numbers” is
an example of this pattern – the pattern loops through the array from beginning to end, and
at each iteration compares the current element (blah[k]) to the largest element found so
far (blah[indexOfLargest]).

Another example of this pattern is the
code to the right, which determines
whether an array is sorted from
smallest to largest. It does so by looping
through the array from beginning to end,
comparing the current element to the
next element in the array.

One more example of this pattern
is the code to the right, which
determines whether an array is a
palindrome (i.e., whether the array
reads the same backwards as
forwards). Here, the current
element is compared to its mate
that is the same distance from the
end that the current element is
from the beginning.

int k;

int isSorted = 1;

for (k = 0; k < length - 1; ++k) {

 if (blah[k] > blah[k+1]) {

 isSorted = 0;

 break;

 }

}

if (isSorted == 1) {

 ...

} else {

 ...

}

int k;

int isPalindrome = 1;

for (k = 0; k < length / 2; ++k) {

 if (blah[k] != blah[length – 1 - k]) {

 isPalindrome = 0;

 break;

 }

}

if (isPalindrome == 1) {

 ...

} else {

 ...

}

Start by setting isSorted
to 1 (which means “true”).

After the loop concludes, if isSorted is still 1 (true), then
every element of the array is no bigger than the
element after it, so the array is sorted from smallest to
largest. Do whatever the problem calls for in that case.

Otherwise, the loop found an element of the array
that is smaller than the element after it, so the array
is NOT perfectly sorted from smallest to largest. Do
whatever the problem calls for in that case.

Start by setting isPalindrome
to 1 (which means “true”).

Here we have
found a pair of
elements that are
NOT in the right
order, so set
isSorted to 0
(“false”) and quit
the loop.

Here we have found
a pair of matching
elements that are
NOT the same, so
set isPalindrome to
0 (“false”) and quit
the loop.

Being “off by 1” is a common error in
problems like this, for example, using
 blah[length – k]
instead of
 blah[length – 1 – k]

The best way to avoid such “off by 1” errors is to trace the code on one or more small,
concrete examples. For example, here you should try arrays of length 4 and 5. (You should
do both odd and even lengths because of the length / 2 in the for statement.)

 Arrays Page 8

10. Loop-within-a-loop array patterns.

One classic example here is printing (or otherwise processing) all the values of a two-
dimensional array:

Another classic example of the loop-within-a-loop pattern is selection sort, an algorithm for
sorting an array. Selection sort is simple to understand/code and a good example of a loop-
within-a-loop pattern. However, be aware that there are much faster sorting algorithms
(e.g. quicksort) and that the standard C library includes a sort function (qsort).

int nRows = 100;

int nColumns = 100;

float blah[nRows][nColumns];

for (j = 0; j < nRows; ++j) {

 for (k = 0; k < nColumns; ++k) {

 printf("%f\n", blah[j][k]);

 }

}

int j, k, indexOfMinimum;

float temp;

for (j = 0; j < length - 1; ++j) {

 indexOfMinimum = j;

 for (k = j + 1; k < length; ++k) {

 if (blah[k] < blah[indexOfMinimum]) {

 indexOfMinimum = k;

 }

 }

 temp = blah[j];

 blah[j] = blah[indexOfMinimum];

 blah[indexOfMinimum] = temp;

}

Repeatedly:

Find the smallest
remaining element
in the array.

Put that element
just after the other
elements that you
have already placed
into their sorted
order.

So the first time through the outer loop, you put the
smallest element into blah[0]. The second time
through the outer loop, you put the second-smallest
element into blah[1]. And so forth.

http://en.wikipedia.org/wiki/Quicksort
http://www.gnu.org/s/libc/manual/html_node/Array-Sort-Function.html

 Arrays Page 9

11. The sort-first pattern.

Some operations are easier to perform on a sorted array than an unsorted one. For
example, one way to find the median of an array is:

 Step 1: Sort the array (using selection sort, per the previous pattern, or some faster
sorting method).

 Step 2: The median is the middle element of the sorted array if the array length is
odd, else it is the average of the two closest-to-middle elements in the sorted array.

Be aware that there are more sophisticated methods for finding the median of an array that
are slightly faster than the sort-first approach of this pattern.

Another example of this sort-first pattern is searching for a given element: if the array is
sorted, binary search will usually find the element (or determine that it is not in the array)
much faster than the linear search pattern presented earlier. It is especially useful if you
can sort once, then search many times. Here is the code for binary search:

int binarySearch(int blah[], int length, int numberToFind) {

 int leftIndex, rightIndex, middleIndex;

 leftIndex = 0;

 rightIndex = length - 1;

 while (leftIndex < rightIndex) {

 middleIndex = (leftIndex + rightIndex) / 2;

 if (blah[middleIndex] < numberToFind) {

 leftIndex = middleIndex;

 } else if (blah[middleIndex] > numberToFind) {

 rightIndex = middleIndex;

 } else {

 return middleIndex;

 }

 }

 return -1;

}

Begin by considering the entire array.

Since the array is sorted,
if the number at middleIndex
is less than numberToFind,
then we can restrict our search
to array positions bigger than
middleIndex.

Try the middle of the
portion of the array
that might hold the
numberToFind.

Likewise, but we can restrict our
search to array positions smaller
than middleIndex in this case.

The number at middleIndex is
numberToFind – found it! We have eliminated all positions in the

array – numberToFind is not in the
array. Return a code to indicate that.

http://en.wikipedia.org/wiki/Binary_search_algorithm
http://en.wikipedia.org/wiki/Binary_search_algorithm

 Arrays Page 10

12. The “histogram pattern” for counting the occurrences of “events”, e.g. to find the mode
(most common number) of an array.

This pattern is useful whenever you want to know how often an “event” occurs, when you
have a collection of events that can be numbered into a relatively small range. The general
pattern goes like this:

 Step 1: Declare an array that will hold values 0 .. n, where “events” are numbered
and n is the biggest event that can occur.

 Step 2: Initialize all elements of the array to 0.

 Step 3: Repeatedly:

o Get the next “event” in the collection of events from which the histogram is
to be built. That event’s number is, say, m.

o Increment the array value at index m.

After Step 3 completes, the array holds the desired histogram – the value at index i is
the number of times that event i occurred (hence the array is a histogram).

Here is a concrete example of this pattern: Suppose that you generate 10,000 random
integers, each between 0 and 100, inclusive, and suppose that you want to know which
random integer occurred most often. The following code solves this problem.

int k, generatedNumber, indexOfMaximum;

int numbers[101];

for (k = 0; k < 101; ++k) {

 numbers[k] = 0;

}

for (k = 0; k < 10000; ++k) {

 generatedNumber = rand() % 101;

 ++ numbers[generatedNumber];

}

indexOfMaximum = 0;

for (k = 1; k < 101; ++k) {

 if (numbers[k] > numbers[indexOfMaximum]) {

 indexOfMaximum = k;

 }

}

printf("%i occurred most often. It occurred %i times.\n",

 indexOfMaximum, numbers[indexOfMaximum]);

There are 101 “events” – the randomly generated
numbers can be any integer from 0 to 100, inclusive.

Initially, none of the events have occurred, so
initialize all the entries in the histogram array to 0.

Generate the 10,000 random numbers.
Each time, increment the histogram
array at the index of the generated
number (i.e., at the index of the “event”.

Find the largest number in the
histogram array – that is the
event that occurred most often.

Finding the
mode of an
array of
10,000
numbers,
each of which
is between 0
and 100,
works just like
this, except
that you loop
through the
array here
instead of
generating
the numbers.

 Arrays Page 11

13. Using a pointer to simulate an array.

Applications of this include:

 Setting the length of the array at run-time, that is, when the space-allocation
statement executes, even if you have an older compiler (pre-C99).

 Two-dimensional “ragged arrays” in which the lengths of the rows vary from row to
row (this is especially handy for inputting and storing lines of text).

 Passing an array to a function.

See Using a Pointer to Simulate an Array in Using Pointers to Save Time and Space for
details.

../UsingPointersToSaveTimeAndSpace/discussion.pdf#UsingPointersToSimulateArrays
file:///C:/David/120R/Public/Resources/C/UsingPointersToSaveTimeAndSpace/index.html

