
 Page 1

Secret Agent Man!
Capstone Python Project

Features
CSSE 120, Introduction to Software Development –

Robotics
Spring term, 2013-2014

Features: (SAM stands for Secret Agent Man – your robot).

Per the song Secret Agent Man, as performed by Johnny Rivers at
http://www.youtube.com/watch?v=6iaR3WO71j4, your robot is a
Secret Agent Man. As such, he has to find various Bond Girls – Anya
Amasova, Wai Lin, Honey Ryder and others. Sometimes he just finds
her, sometimes he talks with her, whatever. This document lists the
features by which he can do so. [Note: SAM and Bond Girls are just
a “theme” for this project – implementing the features does not
require a Secret Agent Man or Bond Girls, although you can
incorporate them explicitly if you wish.]

All features must be implemented in a nice Graphical User Interface
(GUI). Each person must provide a GUI for their features.

• All input and output must be from your GUI (plus any
optional external devices you might use, like Wiimotes).
There must be no input or output from/to a Console
window (except for debugging purposes).

• The more different kinds of GUI widgets, the better.

• The more your follow good GUI design principles (and you
can explain how your GUI does so), the better.

There are Basic, Advanced and Unmarked features. Your instructor
will explain to you the role of each, along with the role of the color-
coding, in your grading. But the spirit of the grading is:

• Green features must be implemented.

• There are 3 pairs (Basic/Advanced) of Blues, and 3 pairs
(Basic/Advanced) of Yellows. Each student implements a
Basic Blue, an Advanced Blue, a Basic Yellow and an
Advanced Yellow. Restriction: for any Basic that you
implement, a teammate (not you) must implement its
matching Advanced, using your code where practical.

• The team must ALSO implement more to earn a high grade.
There are LOTS of options for what to do!

Greens and blues are simpler robot ideas. Yellows are more
sophisticated robot ideas (that are more challenging to implement).

Each feature has multiple sub-features. Generally speaking:

• For Basic features: you must implement all the sub-features
to achieve full credit for that feature.

• For advanced and unmarked features: There are have lots of
options for which sub-features you can implement. The
more, the better, but doing ALL the sub-features is (for most
features) far beyond what is reasonable. Sometimes the
sub-features have nothing to do with each other.

http://www.youtube.com/watch?v=6iaR3WO71j4

 Page 2

0. Each student does this feature: Your portion of the GUI
indicates, for each Sprint, your name and the total hours that
you worked on that Sprint. This information must appear at the
end of each Sprint! Additionally, display the total hours worked
on the project. For full credit, read this information from a file
(instead of putting the data in the code). Since each student
does this feature, EACH of you makes a card for this.

0. There is a Connect and Disconnect button, plus a way to specify
the port (possibly ‘sim’). Those buttons behave as their names
suggest. There should be a SINGLE Connect button in the
project.

1. Basic: SAM can be tele-operated (i.e., remote-controlled, like a
remote-control car). The user can use buttons to move SAM
forward and backward, spin her clockwise and counterclockwise.
Additionally, the user can change her speed while she is
moving/spinning.

2. Advanced: SAM can be tele-operated (i.e., remote-controlled,
like a remote-control car). The user can make SAM move in
curves (i.e., linear and angular motion at the same time). Uses
easy-to-operate interfaces like keys (without interfering with
other features!), gamepads, wiimotes, or other remote-control
devices (perhaps wireless).

3. Basic: SAM can move autonomously, by going a specified
distance in a specified direction at a specified speed. That is, the
user can set the direction (forward, backward, spin left or spin
right) and the distance (in some reasonable units). Then, the
user can make the robot go (e.g. by pressing a Go button) and
the robot should move the specified direction for the specified
distance, with some reasonable accuracy.

4. Advanced: SAM can move autonomously, by going a specified
distance in a specified direction at a specified speed. There are
multiple implementations (any of which can be chosen by the
user), with demonstrated understanding of when and why one is
better/worse than another. For example, one implementation is
the “time” approach and another is the “distance sensor”
approach. There is high accuracy for the best implementations.
Can move linearly and angularly at the same time, with some
reasonable understanding of “distance” and “speed” in that
case.

5. Basic: SAM can move autonomously, by going until an event
occurs. The user can set the speed and which bumpers to use
(both, just-left or just-right). Then, the user tells the robot to
start, at which point the robot moves until the relevant
bumper(s) are pressed. Likewise, the user can set the speed and
a “darkness level.” Then, the user tells the robot to start, at
which point the robot moves until its front cliff sensors (one or
both, your choice) see a black line of sufficient “darkness”.

6. Advanced: SAM can move autonomously, by going until an
event occurs. This is like the basic, but using different, multiple
and more sophisticated sensors – the infrared knob on the top
of the robot and/or the camera, for example. In each case, the
user sets some values, then makes the robot start moving, then
the robot continues until the sensors give values in the ranges
that the user has set. The best implementations will require
multiple sensors mixed in interesting ways, e.g. the infrared
hears 100 followed a second later by 200.

 Page 3

7. Basic: SAM can follow a black line. Uses P (proportional)
control. Can follow a curvy black line about 2 inches wide, with
reasonably gentle curves, using the left front signal (for the left
wheel speed) and the right front signal (for the right wheel
speed). (You can also use other sensors if you wish.) The P
constants are tuned reasonably. Auto-calibrates the darkness of
the lines under current lighting conditions by the human placing
the robot in positions as desired (with no changes to the
program needed for this process). Must work under various
lighting conditions and with various robots. (Their IR light
sensors vary wildly from robot to robot, and even within a
robot!)

8. Advanced: SAM can follow a black line using PID and other
control, and possibly can follow a wall too. The I and D
constants are implemented (but possibly not tuned perfectly, as
that may be hard). The user can set all the parameters at run-
time, ideally even while the robot is doing line-following. Uses
additional sensors. Can follow a wall, using “bump and bounce”
and perhaps also PID. Performs wall-following as well or better
than the demo.

9. Basic: SAM can move to user-specified waypoints. That is, the
user can enter a sequence of (x, y) coordinates and tells the
robot to go. Then, the robot moves to each, one after the other.
(The origin of the coordinate system is where the robot began
the sequence of moves.)

10. Advanced: SAM can move to user-specified waypoints. As per
the Basic version of this feature, but additionally some or all of
the following: The robot can move around obstacles as it moves
from waypoint to waypoint. There is a nice way to enter
coordinates (e.g. by clicking on a map). Coordinates come from

a file. User can control speeds as well (perhaps via pre-
specification, perhaps via teleoperation, perhaps both). The
robot remembers paths that it is teleoperated and then can
reproduce the paths autonomously. The robot keeps track of its
position through ALL its movements (even those produced by
teammate’s code) and the way-point movement is relative to
the position at which the robot began its operation, not the
position at which it began the sequence of way-point moves.

11. Basic: SAM can chat with another robot via IR or another
appropriate sensor. [This description uses IR, but other sensors
might be able to be used in a similar way.] User can make SAM
start/stop emitting a user-specified IR signal. SAM displays
whatever IR signal it is currently hearing. SAM can “chat” via
user-specified IR numbers sent synchronously: SAM starts
sending, then listens until it hears something from the other
robot, then starts sending something different, then listens until
it hears something from the other robot, etc. You can assume
that the other robot never sends back immediately the same
number SAM just sent, that no robot sends the same IR signal
twice in a row, and any other simplifying assumptions that are
required (ask your instructor about any such assumptions as
needed).

12. Advanced: SAM can chat with another robot via IR or another
appropriate sensor. As per the Basic version of this feature, but
additionally some or all of the following: Uses codes to send
letters, words and entire phrases. Encrypts and decrypts
(perhaps as simple as Caesar’s cipher, or as complicated as a
public key encryption system). Can use a file-specified encoding
system. Communicates asynchronously, or uses more advanced
protocols than the basic (either standard ones sort of like TCPIP

 Page 4

or ones that you develop yourself). Does handshaking to
identify itself.

13. SAM follows another robot. Uses the camera, or uses the
“caps” for directionality with the other robot emitting IR, or the
other robot sends codes to indicate directionality, or …

14. SAM sings and dances with a light show. Songs of more than 16
notes. Plays MIDI from a file. Composes songs – randomly, or
with principles from music theory. Likewise for dances and/or
light shows. Does the light show while dancing and singing,
perhaps choreographed.

15. SAM does interesting things with external motors, servos
and/or sensors: moving something, shooting something,
sensing something, or …

16. SAM offers Rogerian psychotherapy, ala Eliza
(http://en.wikipedia.org/wiki/ELIZA).

17. SAM uses swarm techniques and/or distributed algorithms to
accomplish interesting things.

18. SAM uses parallel algorithms (in processes and/or threads, in a
single processor or across cores) to accomplish interesting
things.

19. SAM can go until it is “stuck” (still trying to move), no matter
what the direction (not just forward). (Hint: this is easy if you
figure out the surprising sensor to use.)

20. SAM does interesting things with computer vision: e.g. finding
objects, using semaphores to communicate, or … [Note: this

item requires figuring out how to connect the camera to the
robot.]

21. SAM uses files or internet communication to do interesting
things beyond that described above.

22. SAM displays a short, fictitious bio (for him/her). Possibly with
fictitious bios for each of you (students) as well.

23. SAM uses a Leap Motion device (and accompanying Python
software) to control the robot with hand movements.

24. SAM … [You suggest something interesting!]

http://en.wikipedia.org/wiki/ELIZA

