
Team ______  Rubric for Page 1 

Keepon Dancing 
Capstone Python Project 

CSSE 120, Introduction to Software Development – Robotics 
Winter term, 2011-2012 

• The features (functionality of the program) are listed on the following pages.  Highlighted features are 
required.  You earn points for non-highlighted features only if you complete all the highlighted features 
successfully. 

o Generally speaking, “successful” means at least 3 of 5, but note that most highlighted features are 
designed to be all-or-nothing. 

• You score on a feature can range from 0 (not done) to 5 (exemplary).  For the more ambiguous features 
(e.g. follow an arbitrary line …), exemplary means that you can do that feature at a very high level, while a 1 
(needs improvement) would be the score for the simplest version of that feature. 

• Available points are: 

o Features implemented:  2,690 points available, but capped at 800 

 More points increase your fame but not your total score 

o Quality of code:  150 points available, but capped at 100, 
    and as much as   minus 150   for poor quality. 

o Team deliverables (other than code, but including documentation among other items): 
    150 points available, but capped at 100, and as much as   minus 150   for poor deliverables. 

o Individual deliverables (other than code, but including documentation among other items): 
    150 points available, but capped at 100, and as much as   minus 150   for poor deliverables. 

• Your score (out of 1,000, but with a maximum possible of 1,100) is computed by: 

o Sum the points you earned in the above four categories 

o Multiply that sum by your Contribution Multiplier – your instructor’s judgment of the degree to 
which you contributed to your team (100% for appropriate contributions, less for less than 
appropriate contributions) 

Since the score for Features is capped at 800 and each of the other three categories is capped at 100 points, 
the maximum possible score is 1,100 of 1,000 (i.e., 110%). 

Important:  Note that if your team scores 1,400 on Features (a HUGE score), but the other three items are 
terrible, your score is a   (800 – 150 – 150 – 150)   =   350.    Since that is of 1000, it would be an F (35%, failing). 

For any feature, if you have any doubts about what that feature requires, just ask.  For those interested, the last page 
of this document provides a breakdown of the points by subcategory.



Highlighted features are required.  Page 2 

Start, Interrupt and Quit:  The user can, via the graphical user interface (GUI: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
1. Enter the port number to which to connect 1        
2. Connect  to her robot via the current port 

number 1        

3. Disconnect (without closing the program) 1        
4. Switch between modes (passive, safe & full) 1        
5. Run in the simulator 1        
6. Apply a “kill switch” that stops the operation 

that is currently running.  Exemplary requires this 
ability for ANY operation.  Stopping during 
teleoperation is not relevant to this feature. 

5 
       

7. Ditto, but pause/resume instead of stopping 
the operation that is currently running 5        

Total possible for Start, Interrupt and Quit:  25 + 50 = 75 points (required/additional features) 
 

Display Project Information:  The user can, via the graphical user interface (GUI), easily see: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
8. The name of this term’s project (Keepon 

Dancing), the course name and current year 
and term 

0 
but 

required 

       

9. A brief description of the project (you can quote 
from any description we provide if you wish) 1        

10. For each team member, her name and a 
short (fictitious if you like) bio 1        

11. For each team member, a short paragraph 
describing the main features for which that 
team member was the technical lead 

1 
       

12. For each team member, and also for the 
team as a whole, the total person-hours 
spent on the project during Sprint 1† 

1 
       

13. Ditto for Sprint 2 (report cumulative hours as 
well as hours during the Sprint)† 1        

14. Ditto for Sprint 3 (report cumulative hours as 
well as hours during the Sprint)† 1        

15. Anything else notable about the project 1        

Total possible for Display Project Information:  30 + 5 = 35 points (required/additional features)  

                                                 
† Include in-class and after-class hours.  To earn this feature, it must be demonstrated shortly after THIS Sprint ends – NOT LATER. 



Highlighted features are required.  Page 3 

Display the Robot’s State:  The user can, via the graphical user interface (GUI), easily see: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
16. Current values of the sensors:  bump, wheel-

drop, wall, cliff, IR, LEDs, voltage, current, 
overcurrent, charging state, song playing, etc. 
(about 1 point for each 4 sensors whose value is shown) 

3 
       

17. Current port number 1        
18. Current mode (off, passive, safe or full) 1        
19. Operation(s) currently running (e.g., direction 

& speed while moving, number of the demo 
playing (if any), how many Keepons are 
currently visible, indicator for whether your 
robot is touching a Keepon,, indicators for 
whether conversation/dancing/singing/light 
shows are underway, etc) 

2 

       

20. Position (x, y) & direction of your robot, 
relative to the robot’s initial position and 
direction, after teleoperation (exemplary 
requires this feature to work after any movements, not 
just teleoperation) 

3 

       

21. Number of Keepons visible 2        
22. Directions (angles) to the visible Keepons 2        
23. Distances to the visible Keepons 2        
24. Information about current or past odometry 

error 3        

25. Other interesting historical data (from earlier 
in this run) or cumulative or statistical data 3        

26. Other interesting state information 3        
27. Some or all of the above update 

automatically in some reasonable way 
(exemplary requires that the updates occur at time 
intervals that are appropriate to the thing being 
displayed) 

3 

       

Total possible for Display the Robot’s State:  0 + 140 = 140 points (required/additional features) 

  



Highlighted features are required.  Page 4 

Teleoperation:  The user can, via the graphical user interface (GUI), make her robot: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
28. Move from its current position to any 

reasonably accessible position to which the 
instructor points (via teleoperation – you 
control the robot’s motion) 

8 

       

29. Include concurrent linear and angular motion 
during teleoperation (so that the robot 
moves in an arc that you control) 

3 
       

30. Change speeds in between teleoperation or 
other actions (exemplary requires a full range of 
speeds and both directions) 

5 
       

31. Change speeds concurrent with tele-
operation, i.e., without stopping the action 
underway (exemplary requires a full range of speeds 
and both directions, as well as the ability to change 
speed/direction while using any teleoperation controls) 

4 

       

32. Make the robot go up stair steps (and/or 
gently down) 10        

33. Do other interesting teleoperation (score 
depends on difficulty and creativity) 5        

Total possible for Teleoperation:  65 + 110 = 175 points (required/additional features) 

  



Highlighted features are required.  Page 5 

Semi-Autonomous Motion:  The user can, via the graphical user interface (GUI), 
make her robot: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
34. Move linearly (at the current speed) a user-

supplied distance (and then stop) 2        

35. Spin (at the current speed) a user-supplied 
angular distance (and then stop) 2        

36. As in the two previous items, but with linear 
and angular motions concurrently (stopping 
each when its distance limit is reached) 

2 
       

37. Move linearly a user-supplied time (and  then 
stop) 2        

38. Spin a user-supplied time (and then stop) 2        

39. As in the two previous items, but with linear 
and angular motions concurrently (stopping 
each when its time limit is reached) 

2 
       

40. Modify the requested distance/time the user 
asks the robot to travel, while the robot is 
moving 

4 
       

41. Move to a user-specified (x, y) position and 
direction relative to the robot’s current 
position and direction 

2 
       

42. Ditto, but relative to the robot’s initial 
position and direction 7        

43. Move (at the current linear and angular 
speeds) until either bump sensor is activated 3        

44. Move (at the current linear and angular 
speeds) until any cliff sensor is activated 3        

45. Do, via a single control, any of several 
interesting user-specified movements, e.g. 
drive in a square (exemplary requires a large selection of 
choices available) 

3 
       

46. Choose a demo and start that demo running, 
or stop the current demo running 2        

47. Turn on or off a stop-when-bumped-while-
moving option (while doing any of the above types of 
motion, as well as teleoperation; exemplary requires this 
ability while doing the fully autonomous motions as well) 

4 
       

48. Ditto, but a stop-when-cliff-sensor is 
activated option (while doing any of the above types of 
motion, as well as teleoperation; exemplary requires this 
ability while doing the fully autonomous motions as well) 

4 
       

Total possible for Semi-Autonomous Motion:  55 + 165 = 220 points (required/additional features)  



Highlighted features are required.  Page 6 

Making Keepon Dance (autonomously): 
For all these features, your robot starts in a standard position – a marked place near the center of an open 
space, facing a wall.  There won’t be any obstacles except for Keepons, unless the feature below explicitly 
indicates the presence of obstacles.  Your robot makes Keepon dance by bumping into Keepon (or the robot 
on which she/he/it resides), stopping, and sending a special IR signal. 

These features require autonomous motion – the user initiates the motion, but it is hands-off from there on 
(so no teleoperation, for example). 

To earn these features, the user can make Keepon dance given that: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
Camera features. 
For each of the following, the feature must be implemented by using the camera in a meaningful way. 
Keepon will be on the floor or on a Create (you must deal with both possibilities), unless specified otherwise below. 
49. Keepon is visible when the camera is pointing 

the same direction your robot is pointing 5        

50. Keepon would be visible if the camera were 
pointing a different direction 5        

51. One or more Keepons are within reasonable 
range of your robot, but they are obscured 5        

52. There are multiple Keepons visible (either 
directly or by spinning), and you must make 
all of them dance (partial credit if you make some 
of them dance) 

5 

       

53. Keepin begins visible straight ahead, but 
moves (you can assume that your robot is physically 
capable of catching Keepon, but exemplary requires 
that you catch Keepon in a reasonable time under a 
wide variety of escape antics that Keepon might try) 

5 

       

54. Ditto, but now there are multiple Keepons (at 
the start or during the chase) and you must 
move toward the closest Keepon at every 
point of the chase 

5 

       

55. Keepon is suspended in the air (your robot 
must stop approximately beneath Keepon) 5        

56. Ditto, but now Keepon flies in the air 5        

57. Keepon is at the end of a curvy, colored line. 
(Keepon will not be visible, so you must line-follow, but 
you can color-calibrate before the run.) 

5 
       

58. Your robot and Keepon play tag (your code runs 
on your robot and the Keepon robot) 7        

59. Your robot and Keepons play Marco-Polo 
(your code runs on your robot and the Keepon robot – 
see your instructor for what “blindfold” means here) 

7 
       

60. Other interesting situations that require use 
of the camera (score depends on difficulty and creativity) 7        

61. Keepon is somewhere (that is, anywhere your 
instructor chooses!) on campus 

Priceless        



Highlighted features are required.  Page 7 

(continued from the previous page) 

To earn these features, the user can make Keepon dance given that: 

Non-camera features. 
For each of the following, the feature must be implemented without using the camera.  Also, the motion must be 
“reasonable” – no completely random wandering – given that you KNOW that Keepon is placed as described. 
62. Keepon is within 15 feet straight ahead 

(Keepon may be placed after your robot starts moving, 
behind your robot) 

2 
       

63. Keepon is on the circumference of a square 
whose sides are each 10 feet (your robot starts in 
the center facing directly toward one of the sides) 

3 
       

64. Keepon is on the circumference of a circle 
whose radius is N feet, where the user 
specifies N at run time (your robot starts in the 
center of the circle) 

3 

       

65. Keepon is somewhere along a path that the 
user supplies by giving waypoints† given that 
there are no obstacles on that path (exemplary 
requires a complicated path) 

5 
       

66. As in the previous item, but with obstacles on 
the path (exemplary requires several obstacles) 5        

67. Keepon is at a waypoint, but where the 
waypoint changes as your robot is moving 
toward the previous value of the waypoint† 

5 
       

68. Keepon can be found by other interesting 
dead reckoning (score depends on difficulty & creativity) 4        

69. Keepon is somewhere along a wall (you must do 
wall-following to earn this feature; Keepon will not be 
on the first wall you follow) 

2 
       

70. Keepon is somewhere along a known oval-
shaped black line‡ 5        

71. Keepon is somewhere along a known more-
curvy black line‡ 3        

72. Keepon is somewhere along a curvy line 
whose darkness requires light calibration‡ 
(exemplary requires semi-automated calibration) 

3 
       

73. Keepon is somewhere along a more difficult 
line to follow that has no intersections‡ 5 

       

74. As above, but the line has intersections‡ 3        

75. Keepon can be found by other interesting line 
and/or wall following (score depends on difficulty and 
creativity) 

5 
       

Total possible for Making Keepon Dance:  100 + 495 = 595 points (required/additional features)  

                                                 
† Waypoints are (x, y) coordinates relative to your robot’s initial position and direction.  For the feature in which the way-point is changing, the 
simplest implementation would have the user change the waypoint but the best implementation might acquire waypoints from an arbitrary 
stream, perhaps even a network stream! 

‡ You must do line-following to earn this feature.  For the most difficult line-following features, light-calibration will be required.  For the most 
difficult lines, you will not have the line in advance, but you can assume that the line is dark on a light surface (but the darkness/lightness may 
change smoothly during the run), there are no impossibly sharp turns, and the line is between 1 and 12 inches wide (but its width may vary 
during the run).  You may be able to earn partial points if your robot can deal with some but not all of these challenges. 



Highlighted features are required.  Page 8 

Jamming with Keepon (via music or lights or dance):  The user can, via the graphical user 
interface (GUI), make her robot: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
76. Play whatever note the user specifies for a 

user-specified duration (3 points for playing the note; 
2 more point for allowing durations longer than 4 seconds) 

2 
       

77. Play a song of your own choosing (1 point for any 
song; 1 more point if the song is more than 16 notes; 1 to 3 
more points if  the song is genuinely interesting) 

4 
       

78. Play any of a selection of songs from which 
the user chooses 3        

79. Compose and play its own songs (exemplary 
requires genuinely interesting songs) 6        

80. Allow the user to choose between blocking 
and non-blocking modes when playing a note 
or song 

2 
       

81. Set its LEDs to whatever state the user 
specifies 2        

82. Perform an LED light-show of your own 
choosing (1 point for any light show; 1 more point if the 
light show uses all three LEDs and a variety of intensities and 
red-green spectrums; 1 to 3 more points if  the light-show is 
genuinely interesting g) 

3 

       

83. Perform any of a selection of LED light-shows 
from which the user chooses 2        

84. Compose and perform its own LED light-
shows (exemplary requires genuinely interesting light 
shows) 

4 
       

85. Perform a dance of your own choosing 
(exemplary requires the dance to be interesting) 3        

86. Perform any of a selection of dances from 
which the user chooses 2        

87. Compose and perform its own dances 
(exemplary requires genuinely interesting dances) 4        

88. Perform a dance, light-show and song 
concurrently  3        

89. Perform a choreographed, more-than-16-
notes, dance, light-show and song 
concurrently (exemplary requires genuinely interesting 
choreography and concurrency throughout the performance) 

7 

       

90. Earn a spot for Keepon and yourself on 
American Idol 

Priceless        

Total possible for Jamming with Keepon:  30 + 205 = 235 points (required/additional features) 

  



Highlighted features are required.  Page 9 

Talking to Keepon:  The user can, via the graphical user interface (GUI), make her robot do the 
following with a Keepon that is within hearing distance (about 1 meter).  All “talking” and 
“listening” is via the IR receiver and sender, per a standard set by your instructor. 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
91. Send and display-as-sent a single-byte 

message to Keepon, chosen by the user from 
the list of single-byte messages, and sent per 
the standard.  For exemplary, you must encode messages 
per an encoding that your instructor supplies. 

3 

       

92. Ditto, but a multi-byte message. 5        

93. Receive and display-as-received a single-byte 
message from Keepon, chosen by Keepon 
and sent per the standard.  For exemplary, you must 
decode messages per an encoding that your instructor 
supplies. 

3 

       

94. Ditto, but a multi-byte message 5        

95. Talk with Keepon via a standard that you 
design and implement, that meaningfully 
augments the instructor-supplied standard 

3 
       

96. Talk more meaningfully with Keepon via a 
protocol that you design and implement, on 
both your robot and on Keepon. For exemplary, 
the protocol must consider efficiency and other networking 
issues. 

10 

       

97. Be a Rogerian therapist for Keepon, ala Eliza – 
google for Eliza therapist (for exemplary, you must 
implement the therapist yourself, but there are easier – but 
still very challenging – approaches that score fewer points) 

20 
       

98. Convince Keepon to follow you home Priceless        

Total possible for Talking to Keepon:  30 + 265 = 295 points (required/additional features) 
  



Highlighted features are required.  Page 10 

User interface:  The user interface: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
99. Implements the basic actions via a 

reasonable GUI 4        

100. Allows teleoperation in a particularly 
user-friendly way (easy to understand, easy 
to operate)† 

4 
       

101. Is visually attractive† 6        

102. Works nicely – How easy is it to use the 
interface without instruction?  How much 
effort is required to do actions?  Is it easily 
extended? and so forth.)† 

8 

       

103. Uses multiple screens consecutively in a 
meaningful way 2        

104. Uses multiple screens concurrently in a 
meaningful way 2        

105. Uses via the keyboard meaningfully (in 
addition to the mouse) 3        

106. Allows devices beyond the mouse and 
keyboard to control the robot (joystick, 
external touch screen, wii mote, …) 

6 
       

107. Stores and retrieve interesting, relevant 
information in files that the user could edit 
(exemplary requires several sets of information, both 
storing and retrieving, and good file organization) 

6 
       

108. Communicates over the network in a 
meaningful way (score depends on difficulty and 
creativity) 

10 
       

109. Does actions with a nice, interesting user 
interface beyond buttons (LOTS of 
possibilities here – menu’s, drop-down’s, 
sliders, progress bars, …)‡ 

10 

       

110. Does other interesting things (not scored 
in the above) related to the user interface 4        

Total possible for User Interface:  90 + 235 = 325 points (required/additional features)  

                                                 

† This will be your instructor’s subjective opinion.  Be forewarned that exemplary will be hard to earn. 

For exemplary you must (and for other levels you should) justify your user interface design explicitly by scoring it via principles like: 

• Ben Schneiderman’s Eight Golden Rules of User Interface Design at: 

http://faculty.washington.edu/jtenenbg/courses/360/f04/sessions/schneidermanGoldenRules.html 

• Apple’s principles of IOS development at: 

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Principles/Principles.html 

‡ Your score will depend on how nice and how interesting your user interface is, in your instructor’s subjective opinion.  Generally speaking, 
each new TYPE of user interface widget earns you points, while repetitions of widgets of the same type do not.  Also, the features listed 
explicitly in lines above this one do not count toward this feature (no double-counting). 

http://faculty.washington.edu/jtenenbg/courses/360/f04/sessions/schneidermanGoldenRules.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Principles/Principles.html


Highlighted features are required.  Page 11 

Hardware:  Your robot makes use of hardware that you ADD to the ROBOT: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
111. Your robot can successfully tap or poke 

Keepon when Keepon is on another robot 
(with an arm that you add, or something like that) 

10 
       

112. Your robot can press the Keepon’s 
buttons for responding to music and touch 10        

113. Camera:  Your user interface shows what 
the camera sees (for exemplary, this is updated 
automatically at a reasonable rate) 

5 
       

114. Camera:  Your user interface shows a 
processed form of what it sees (e.g. blobs) (for 
exemplary, this is updated automatically at a 
reasonable rate) 

5 
       

115. Camera:  Your user interface allows 
teleoperation of the camera’s pan and tilt 5        

116. Camera:  Other interesting features that 
do not appear elsewhere in this feature list 
(score depends on difficulty and creativity) 

10 
       

117. Other sensor(s) that you add yourself 
(not built-in):  Your user interface can display 
its reading 

6 
       

118. Other sensor(s) that you add yourself 
(not built-in):   Your robot uses the sensor(s) 
to do something interesting.  Exemplary requires 
that the interesting thing has something to do with 
Keepon. 

10 

       

119. Other sensors: Other interesting features 
that do not appear elsewhere in this feature 
list (score depends on difficulty and creativity) 

6 
       

120. Motor(s) that you add yourself (not 
built-in):  Your user interface can make it act 
(operate) 

6 
       

121. Motor(s) that you add yourself (not 
built-in):  Your robot uses it to do something 
interesting.  Exemplary requires that the interesting 
thing has something to do with Keepon.  The top two 
features in this section are examples of this (no double-
counting). 

10 

       

122. Motors:  Other interesting features that 
do not appear elsewhere in this feature list 
(score depends on difficulty and creativity) 

6 
       

123. Volume control (of the Create) 10        

124. Make good use of multiple cores in your 
laptop (laptop hardware, see instructor for details) 10        

125. Other hardware: 10        

Total possible for Hardware:  0 + 595 = 595 points (required/additional features)  



Highlighted features are required.  Page 12 

Your Ideas:  Suggest your ideas to us, we’ll tell you whether or not they earn points: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Features (functionality) Weight 5 4 3 2 1 0 Points 
126.  

 ?        

127.  
 ?        

128.  
 ?        

129.  
 ?        

130.  
 ?        

 
 

Total possible for Features:  425 points on required features, plus 2,265 points on additional features 
=  2,690 points (but limited to a maximum of 800 for Features – more is great, but won’t increase your score) 

  



Highlighted features are required.  Page 13 

Quality of code: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Deliverable Weight 5 4 3 2 1 0 Points 
131. Final version of code:  is decomposed 

into functions in a reasonable way 5        

132. Final version of code:  re-uses functions 
where practical, does not contain repetitive 
code 

5 
       

133. Final version of code:  functions are 
reasonably sized (generally 5 to 20 lines of 
code, but exceptions are possible) 

3 
       

134. Final version of code:  no magic numbers 2        

135. Final version of code:  well-chosen 
variable and function names 2        

136. Final version of code:  Every module (file) 
has a comment at the top that lists the 
author(s) and briefly describes that module 

1 
       

137. Final version of code:  All code meet the 
standards imposed by Source ~ Format Code 
(control-shift-F) in Eclipse 

1 
       

138. Final version of code:  white space is used 
appropriately (in particular, there is one line – no 
more and no less – between each function definition) 

1 
       

139. Final version of code:  meets the other 
coding standards that we have demonstrated 
throughout 

1 
       

140. Code after Sprint 1:  is of good quality 
(per the above characteristics, summarized)† 4        

141. Code after Sprint 2:  is of good quality 
(per the above characteristics, summarized)† 5        

Total possible for Quality of Code:  150 points (but capped at 100 points) 
  

                                                 
† To earn this feature, it must be demonstrated shortly after THIS Sprint ends – NOT LATER. 



Highlighted features are required.  Page 14 

Required team deliverables: 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

Deliverable Weight 5 4 3 2 1 0 Points 
142. Screen Layout (can be very rough and 

does not need to be kept up-to-date, must be 
demonstrated during or shortly after Sprint 1) 

1 
       

143. Release Plan for Sprint 1† 4        

144. Release Plan for Sprint 2† 5        

145. Release Plan for Sprint 3† 5        

146. Structure Chart or other document that 
organizes the code for Sprint 1† 1        

147. Structure Chart or other document that 
organizes the code for Sprint 2† 1        

148. Structure Chart or other document that 
organizes the code for Sprint 3† 1        

149. Code after Sprint 1:  Every function has a 
doc-comment that specifies the function – 
what it does (not how!), the parameters 
expected, and the value(s) returned (partial 
credit even if your comments are brief – don’t bog 
down in documentation, use it to help your work)‡ 

4 

       

150. Ditto, for Sprint 2‡ 4        

151. Ditto, for Sprint 3‡ 4        

Total possible for Team Deliverables:  150 points (but capped at 100 points) 
  

                                                 
† To earn this feature, it must be demonstrated shortly after THIS Sprint begins – NOT LATER – and then updated and demonstrated again 
shortly after THIS Sprint ends – NOT LATER. 
‡ To earn this feature, it must be demonstrated shortly after THIS Sprint ends – NOT LATER. 



Highlighted features are required.  Page 15 

Required individual deliverables: 

For _______________________________________ 

  Exemplary Satis-
factory 

Needs 
improvement 

Not 
done 

Weight × 
Score  

 
Deliverable Weight 

5 4 3 2 1 0 Points 

152. Task List for Sprint 1† 3        

153. Task List for Sprint 2† 4        

154. Task List for Sprint 3† 4        

155. Code in your module(s) after Sprint 1:  is 
of good quality (per the characteristics listed 
in the Quality of Code section, summarized)‡ 

1 
       

156. Ditto, after Sprint 2‡ 2        

157. Ditto, after Sprint 3‡ 2        

158. Code in your module(s) after Sprint 1:  
Every function has a doc-comment that 
specifies the function – what it does (not 
how!), the parameters expected, and the 
value(s) returned (partial credit even if your 
comments are brief – don’t bog down in 
documentation, use it to help your work)‡ 

1 

       

159. Ditto, after Sprint 2‡ 2        

160. Ditto, after Sprint 3‡ 2        

161. Peer evaluation for Sprint 1 is honest, 
thoughtful and perceptive‡ 2        

162. Ditto, for Sprint 2‡ 2        

163. Ditto, for Sprint 3‡ 5        

Total possible for Individual Deliverables:  150 points (but capped at 100 points) 
 
Instructor’s judgment of the degree to which you contributed to your team (your points are multiplied by this 
number): 
 
Appropriate contributions:   100%  Not as well as we expect:   _______________________ 
 
Your score = (Team Total + Individual Total) × Contribution Multiplier 
 
 = (____________ + ______________) × _____________ 
 
 = _______________ of 1,000 (but the maximum possible score is 1,100, i.e., 110%)  

                                                 
† To earn this feature, it must be demonstrated shortly after THIS Sprint ends – NOT LATER – and may be checked DURING the Sprint.  You 
should update your Task List at every class session. 

‡ To earn this feature, it must be demonstrated shortly after THIS Sprint ends – NOT LATER. 



Highlighted features are required.  Page 16 

For those interested, here is a breakdown of the points: 
 Points available from:  

Category 

Highlighted features 
(team must complete 
these features to earn 

other points) 

Additional features Total points available 
from features 

Start, Interrupt and Quit 25 50 75 

Display Project Information 30 5 35 

Display the Robot’s State 0 140 140 

Teleoperation 65 110 175 

Semi-Autonomous Motion 55 165 220 

Making Keepon Dance 100 495 595 

Jamming with Keepon 30 205 235 

Talking to Keepon 30 265 295 

User Interface 90 235 325 

Hardware 0 595 595 

Total from Features 
(capped at 800): 425 2,265 

2,690 
(but limited to a 

maximum of 800) 

 

Process points: Available Capped at 

Quality of Code 
150 available 

(but up to -150 for very poor work) 
100 

Team Deliverables 
150 available 

(but up to -150 for very poor work) 
100 

Individual Deliverables 
150 available 

(but up to -150 for very poor work) 
100 

Total from Process 
(capped at 300): 

450 300 

So the total available is 3,140, but capped at 1,100 = a score of 110% 

So: 

• A team that is perfect on all the high-lighted features, process and code, but does nothing else, scores 725 
points, i.e., a low C. 

o High-lighted features must be completed (not necessarily to perfection) before any additional points 
can be earned from Features. 

o It is not hard to earn 300 points of 300 for process – it just requires steady effort. 

• Each letter grade increase (C to B, B to A, A to A+) requires about 10 additional “easy” features or 4 medium-
hard additional features.  Note:  “easy” is relative to the others, which range from hard to impossible. 

• Earning 110% requires maxing out on both Features (800) and Process (300). 


