
Page 1

Ascii Art – Capstone project in C
CSSE 120 – Introduction to Software Development (Robotics)

Spring 2010-2011

How to begin the Ascii Art project

Proceed as follows, in the order listed.

1. If you have not done so already, learn the project specification – what your project is required to do.

See the AsciiArtSpecification document for that information – we discussed it in class.

In a nutshell, your project will:

 Read ASCII artwork from a file that stores the artwork in a simple compressed form.

 Display the artwork in the uncompressed form in which it is intended to be viewed.

 Do some simple manipulations of the artwork.

It will interact with the user by repeatedly displaying (on the console) a numbered menu of choices.

The user enters the number for her choice. Then the program does whatever is required for that

choice. This continues until the user selects the QUIT choice.

2. The code that we developed in class today is in your individual repository in a project called

AsciiArtAgain

Note: AsciiArtAgain and NOT AsciiArt.

Please do all your work in this new project and discard the old one. (If you have code in the original

AsciiArt project that you want to keep, just copy it into the parallel file in AsciiArtAgain.)

The code in AsciiArtAgain is similar to the code that we developed in class, except in two major

ways:

 main (and functions that main calls) is now in a file main.c

Thus, the AsciiArt.h and AsciiArt.c files contain only structure information and helper

functions, akin to the other .h and .c file pairs.

 The character field of an ArtTriple is now just a single character, not an array of characters.

We put each structure definition (ArtTriple, ListOfArtTriples, AsciiArt) into its own file pair because:

 Each filename is the structure name with .h appended to it, so the structure definitions are

easy to find.

 We teach software development techniques that scale up. For large projects (hundreds or

thousands of structures and other such things), separating functionality into separate files is

critical for keeping intellectual control of the project.

 Separating .h and .c files allows the compiler to run faster in large projects (it does not have

to recompile code in files that have not changed).

 This organization is standard practice in software development in C.

Page 2

3. Read the code, in the following order:

 ArtTriple.h – This defines an ArtTriple:

 A row and column and the character to be printed at that row and column.

 ArtTriple.c

 ListOfArtTriples.h – This defines a ListOfArtTriples:

 An array that contains the ArtTriple’s that define the artwork in its compressed

form.

 The length (size) of that array, that is, how many ArtTriple’s it currently holds

(initially zero).

 ListOfArtTriples.c

 AsciiArt.h – This defines an AsciiArt: the collection of information that the program needs

to operate on a single piece of ASCII artwork. For example, the name of the file that

contains the artwork in its compressed form, the number of rows and columns in the

artwork, and the row/column/character triples that specify the non-space characters to be

printed.

 AsciiArt.c

 main.c – The main function and the functions that it calls, etc.

As you read, make sure that you understand:

 Everything stored in each of the 3 structure types.

 The make and print helper functions for each structure type – what they do, why they do it,

and how they do it.

 What main is doing, and why.

Send questions to csse120-staff@rose-hulman.edu.

If you run the program, it is currently in an infinite loop – you will fix that next.

4. Proceed according to this iterative enhancement plan, in which you implement, test and debug each

stage before proceeding to the next stage.

Stage 1: Implement the structures and their helper functions, the main loop in main, and the

function that shows the menu. [This is what we developed together in class and what you were

given in the AsciiArtAgain project. So this stage is done!]

Except as noted, all your work after Stage 1 will be in main.c.

Stage 2: Currently, the program is in an infinite loop. Augment dealWithMenuOnce so that it

temporarily does ONLY this: It sets the quittingTime field of the AsciiArt structure that it is

given to TRUE. (But it continues to return the art object, as it does now.) After you implement

this, the program should print the menu ONCE and quit.

mailto:csse120-staff@rose-hulman.edu

Page 3

Stage 3: Augment dealWithMenuOnce so that it does the following part of its specification: It

prompts for and inputs the number of the choice from the menu that the user chooses.

Temporarily, it also prints that number, so that you can test this stage. (Remove the print when

this stage is working correctly.)

Stage 4: AFTER reading ALL the instructions for this stage, augment dealWithMenuOnce so that

each user choice (1, 2, … 81, 99) calls a sensibly-named function to (eventually, not yet!) deal

with that choice. See, for example, the enterFilename function that we already supplied for

choice 1. First READ and NOTE that:

 You will move the quittingTime code you previously wrote to the case that handles the QUIT

choice (99).

 All other choices should implement stubs for functions that (at this stage) simply print

something like “Function enterFilename is not yet implemented.”

 Exception: You already have (and should directly call) a function printAsciiArt that

handles the DEBUG (81) choice.

 You should (and often must) provide a prototype for each of your functions – see the

prototypes near the top of main.c for examples.

 If the user makes an invalid choice, like 9, simply print a short error message like “Invalid

input. Try again.”

 IMPORTANT: You do NOT need to do any “input validation” anywhere in this

project except as explicitly specified. For example, you can count on the user not

entering blast! (or any other non-numeric input) as the number she chooses from

the menu.

Test that ALL the choices work as intended so far (i.e., the loop continues until 99 which exits

the program, 81 prints the default AsciiArt object, and the other choices print an appropriate

not yet implemented message.)

IMPORTANT TECHNICAL NOTE: You are very likely to encounter an error message like:

 ... ld.exe: cannot open output file AsciiArtAgain_Solution.exe: ...

This almost certainly means that your program is already running (probably waiting for input).

Kill all your running instances (get help as needed) and all should be OK.

Stage 5 begins on the next page.

Page 4

Stage 5: [Read ALL of this LONG description of Stage 5 before implementing any of it. The code

you write here is not terribly long (mine is under 40 lines of code), but subtle – you must

maintain intellectual control of it.]

In this stage, make Choice 3 from the menu work correctly, so that the user can enter ASCII art

herself. In particular, if the user selects Choice 3, the program should:

 Prompt for and input from the user the number of rows and columns in the ASCII art being

entered.

 Repeatedly prompt for and input from the user:

o A row number

o A column number

o A character to be printed at that row and column

Stop when the user enters a negative number for either the row or the column (and don’t

include the entry with a negative row or column in the data, of course).

The row and column numbers should be zero-based. For example, if the number of rows

is 5, then the row number can be 0, 1, 2, 3, or 4). You are NOT required to do any input

validation here.

See the Sample Run in the AsciiArtSpecification document for an example of the user

interaction that should run when the user chooses Choice 3 from the menu.

 Store the information that the user inputs (per the preceding bullet) in an object that other

functions can use.

To this end, recall that your function that implements Choice 3 should be called from the

dealWithMenuOnce function. The dealWithMenuOnce function takes (as its sole

parameter) an AsciiArt object that is intended to hold all the information about the current

ASCII artwork. Thus, you need to:

o Send that AsciiArt object to your function that implements Choice 3 (as its sole

argument).

o Store the information obtained from the user (number of rows, number of columns,

and a bunch of row/column/character triples) in the appropriate place of the

AsciiArt object sent to your function.

o Return that AsciiArt object from your function, putting it back into the same

variable that was sent to your function, using a statement like:

art = enterYourOwn(art)

if your function that implements Choice 3 is called enterYourOwn.

This is an important statement; be sure you understand exactly why it is necessary

(why can’t the art argument just be mutated?) and how it achieves its goal

(updating the art variable to include the information that the user enters when

executing enterYourOwn in response to the user choosing Choice 3.

With regard to storing the information in the AsciiArt object:

o The ArtTriple and ListOfArtTriples structure definitions are complete – you must

use (call) them but should not modify them.

Page 5

o On the other hand, you must modify the AsciiArt structure definition as you

continue to implement this project. In particular, here you must add fields to the

AsciiArt structure definition to hold the number of rows and number of columns of

the ASCII artwork that Choice 3 inputs.

o Reset the length of the array in ListOfArtTriples to zero, since the user is now

entering a new piece of ASCII artwork (other menu choices let the user

o Other than the number of rows and number of columns, the three structures have

been set up to be exactly what you need. Use them wisely, which includes using

their makeXXX helper functions.

Understanding how to store and access information in structure instances and

arrays is a critical learning objective of this project, so be SURE that you

COMPLETELY understand what you are doing here and why. Don’t hesitate to ask

your instructor questions about this (or any part of this project).

IMPORTANT TECHNICAL NOTES:

o Throughout this program, use scanf and fscanf to do input, and do NOT use their %c

formatting code to input a character. Instead, input a string when you want just a

character and extract and store the first character of the string. See the discussion

about strings (Thursday in class) for details about how to do this and why it is

unwise to do otherwise in this program.

o Use the existing (invaluable, and working!) printAsciiArt function as you are

debugging your code. You’ll need to add printf’s to the existing code that

implements printAsciiArt, for printing the fields that you added to the AsciiArt

structure.

o The symbol for the logical operator OR in C is the vertical bar character (on the

upper-right of most keyboards).

o It is quite OK, indeed recommended, that you add and use additional helper

functions of your own as you do this project. In my implementation,

o Structure assignment, as in the third statement below:

ArtTriple a, b;

a.row = ...

b = a;

makes a copy of the data. (Details in class Thursday/Friday about why this is

important.)

o Pausing and seeing the pop-up information when you type the dot after a structure

object (as in the above example) makes dealing with the structures much easier

than it would be otherwise.

Page 6

Stage 6: Make Choice 4 in the menu work correctly. That is, implement the function that displays

the current ASCII art in its uncompressed form (the form in which it is intended to be viewed).

 Recall that the current ASCII art is stored in the AsciiArt object in the dealWithMenuOnce

function. Thus, that object should be sent to and returned from your function that deals

with printing the ASCII art.

 You will need a two-dimensional matrix of characters for this, with the number of rows and

columns the same as your AsciiArt object indicates. (If the number of rows or columns are

negative, that means that there is nothing to print.) You:

o Declare the matrix (hence allocating storage for it), per the number of rows and

columns specified in your AsciiArt object.

o Loop through the matrix to make it contain all spaces (blanks).

o Loop through the list of ArtTriple’s in your AsciiArt object. For each triple, put its

character at the specified row and column in the matrix.

o Loop through the matrix, row by row, and within each row, column by column,

printing its characters.

If you prefer, you can store the two-dimensional matrix in the AsciiArt object. That uses

more storage but runs a bit faster since you don’t have to reload the characters in the

ArtTriple’s when you print the matrix a second (or third…) time. A classic time-space trade-

off. Either way is fine (and neither is a lot harder than the other) – it’s your choice.

Stage 7: Make Choice 2 in the menu work correctly. That is, implement the function that reads the

compressed-version data from a file instead of from a user.

This is quite similar to Stage 6. You can test using the plane-coords.txt file that I placed in your

AsciiArtAgain project.

Stage 8: Make Choice 1 in the menu work correctly. That is, allow the user to enter than name of

the file containing the ASCII art.

Stage 9: Make Choice 7 in the menu work correctly. That is, implement the function that writes the

ASCII artwork to a file, in its uncompressed (matrix) form. [More on this Thursday.]

More to come, but if you get all the above done, you are in great shape.

