Ascii Art – Capstone project in C
CSSE 120 – Introduction to Software Development
Fall 2012-2013
Elevator Statement
You will design and implement a program that displays Ascii Art – pictures drawn on a computer console using characters found on a typical American keyboard. For example, your program might display pictures like the following:

Page 1

 ,--.
 \ __
 \/|_____.'\
-(___.--._____(
 \ \
 \ \
 `--'
Jg

The ASCII art image above is from the ASCII Art Dictionary at www.ascii-art.de,
curated by Andreas Freise.

The ASCII art image to the right is from Christopher Johnson’s ASCII Art collection at www.chris.com/ascii.

 ,
 |'. ,
 | '-._ /)
 .' .._ ', /_'-,
 ' / _'.'_\ /._)')
 : / '_' '_' / _.'
 |E | |Q| |Q| / /
 .' _\ '-' '-' /
 .'--.(S ,__`) /
 '-. _.' /
 __.--'----(/
 _.-' : __\ /
 (__.' :' :Y
 '. '._, : :|
 '.) :.__:|
 \ ______/
 '._L/_H____]
 /_ /
 / '-.__.-')
 : / /
 : / /
 ,/_____/----;
 '._____)----'
 / / /
 / / /
 .' / \
 snd (______(-.____)

The key challenge is to store the art in files in a simple compressed form, yet print the art uncompressed on a console. Details below.

Background – What is Ascii Art?
From Wikipedia (en.wikipedia.org/wiki/ASCII_art, May 17, 2011):
ASCII art is a graphic design technique that uses computers for presentation and consists of pictures pieced together from the 95 printable (from a total of 128) characters defined by the ASCII Standard from 1963 and ASCII compliant character sets with proprietary extended characters (beyond the 128 characters of standard 7-bit ASCII). The term is also loosely used to refer to text based art in general. ASCII art can be created with any text editor, and is often used with free-form languages. Most examples of ASCII art require a fixed-width font (non-proportional fonts, as on a traditional typewriter) such as Courier for presentation.
Among the oldest known examples of ASCII art are the creations by computer-art pioneer Kenneth Knowlton from around 1966, who was working for Bell Labs at the time.[1] "Studies in Perception I" by Ken Knowlton and Leon Harmon from 1966 shows some examples of their early ASCII art.[2]
One of the main reasons ASCII art was born was because early printers often lacked graphics ability and thus characters were used in place of graphic marks. Also, to mark divisions between different print jobs from different users, bulk printers often used ASCII art to print large banners, making the division easier to spot so that the results could be more easily separated by a computer operator or clerk. ASCII art was also used in early e-mail when images could not be embedded.
Specification, including Implementation Requirements
[bookmark: _GoBack]Here is a sample run that shows much of what you must design and implement:

 1: Enter the name of a file containing ASCII art.
 2: Read ASCII art from the file specified by Choice #1.
 3: Enter your own ASCII art, directly from the console.
 4: Display the ASCII art.
 5: Display the ASCII art after applying transformations to it.
 (The previous choice displays with no transformations.)
 6: Do choices #4 and #5 back to back, with nothing in between.
 7: Write the ASCII art (the complete picture) to a file.
11: Enter transformations to apply to the ASCII art.
81: [For debugging] Print the value of the AsciiArt variable in a human-readable format.
99: Exit this program.

Enter your choice: 2

 1: Enter the name of a file containing ASCII art.
 2: Read ASCII art from the file specified by Choice #1.
 3: Enter your own ASCII art, directly from the console.
 4: Display the ASCII art.
 5: Display the ASCII art after applying transformations to it.
 (The previous choice displays with no transformations.)
 6: Do choices #4 and #5 back to back, with nothing in between.
 7: Write the ASCII art (the complete picture) to a file.
11: Enter transformations to apply to the ASCII art.
81: [For debugging] Print the value of the AsciiArt variable in a human-readable format.
99: Exit this program.

Enter your choice: 81
Filename: plane-coords.txt
Number of rows / columns: 8 16
Number of ArtTriple objects: 47
The ArtTriple objects are:
x y character: 1 2 \
x y character: 0 2 ,
x y character: 0 3 -
x y character: 0 4 -
x y character: 0 5 .
x y character: 1 5 _
x y character: 1 6 \
 [Note: For this sample printout, I removed the long list that continues here …]
x y character: 7 0 j
x y character: 7 1 g
End of list of ArtTriple objects.

 1: Enter the name of a file containing ASCII art.
[Note: For this sample printout, I removed the middle of the menu from here on. It prints the same each time.]
99: Exit this program.

Enter your choice: 4
 ,--.
 \ __
 \/|_____.'\
-(___.--._____(
 \ \
 \ \
 `--'
jg

1: Enter the name of a file containing ASCII art.
[Note: For this sample printout, I removed the middle of the menu from here on. It prints the same each time.]
99: Exit this program.

Enter your choice: 3
How many rows are in the art you are about to enter? 8
How many columns are in the art you are about to enter? 5

Enter an Ascii Art triple: x, y, character
 (or a negative x or y to stop entering): 4 3 w

Enter an Ascii Art triple: x, y, character
 (or a negative x or y to stop entering): 5 3 w

Enter an Ascii Art triple: x, y, character
 (or a negative x or y to stop entering): 6 3 w

Enter an Ascii Art triple: x, y, character
 (or a negative x or y to stop entering): 2 1 w

Enter an Ascii Art triple: x, y, character
 (or a negative x or y to stop entering): 4 1 w

Enter an Ascii Art triple: x, y, character
 (or a negative x or y to stop entering): 3 1 o

Enter an Ascii Art triple: x, y, character
 (or a negative x or y to stop entering): -9 -9 x

1: Enter the name of a file containing ASCII art.
[Note: For this sample printout, I removed the middle of the menu from here on. It prints the same each time.]
99: Exit this program.

Enter your choice: 81
Filename: plane-coords.txt
Number of rows / columns: 8 5
Number of ArtTriple objects: 6
The ArtTriple objects are:
x y character: 4 3 w
x y character: 4 1 w
x y character: 5 3 o
x y character: 6 3 w
x y character: 2 1 w
x y character: 3 1 o
End of list of ArtTriple objects.

1: Enter the name of a file containing ASCII art.
[Note: For this sample printout, I removed the middle of the menu from here on. It prints the same each time.]
99: Exit this program.

Enter your choice: 4

 w
 o
 w w
 o
 w

1: Enter the name of a file containing ASCII art.
[Note: For this sample printout, I removed the middle of the menu from here on. It prints the same each time.]
99: Exit this program.

Enter your choice: 1
Will do enterFilename.

1: Enter the name of a file containing ASCII art.
[Note: For this sample printout, I removed the middle of the menu from here on. It prints the same each time.]
99: Exit this program.

Enter your choice: 99
END OF SAMPLE RUN.

Specification: Your program must behave exactly as indicated by the sample run, except that you may add additional menu items.
Take special note that:
1. The data is stored in a row column character format, but the art is printed row by row, with SPACES (blanks) in all places unspecified by the data.
2. The numbers in the data are 0-based (so the beginning row/column is numbered 0).
3. Throughout, you may assume that no input has whitespace (spaces, newlines, etc.) anywhere in a valid input. For example, you may assume that the filename has no spaces in it.
4. Unless explicitly told otherwise, you are not required to do any input validation, e.g. checking that a row number given by the file or user is not negative.

Implementation requirements:
1. You must have 3 structures (and associated functions) that we will develop together:
a. ArtTriple – what character to print, at what row and column
b. ListOfArtTriples – an array to hold the ArtTriple objects in the current ASCII artwork, plus an integer to hold the number of objects in the array
c. AsciiArt – all the information that the program needs regarding the ASCII artwork that the program is dealing with currently, e.g. the number of rows and columns in the ASCII artwork, the ListOfArtTriple’s that specifies the non-space characters and where they are to be printed,
2. Throughout, use scanf and fscanf (no get’s) and printf and fprintf. Read characters as STRINGS – do NOT use %c in a scanf.
3. Throughout:
a. To make a new structure instance, construct it locally, initialize it, and return it.
b. To make a new array, make it in the caller and pass it to the initializer (and others).
4. Throughout, use functions appropriately. (If you experience code chunks that seem repetitive, refactor them into a function, usually with parameters.)
5. You will need to be able to apply: Structures; Arrays; Arrays of Structures; Strings; File read and write; Using header files; FOR and WHILE loops; and more.
6. Do all your work in the AsciiArt project that you will find in your individual repository.
7. Implement according the following iterative enhancement plan. At each stage, implement, test and debug before proceeding to the next stage!
· Stage 1: Implement the structures and associated functions, as instructed in class.
· Stage 2: Implement main, as instructed in class.
· Stage 3: Make the menu appear.
· Stage 4: The user can make a choice and the response is “I will implement …” or something like that. These are called stubs.
· But Choices 81 and 99 should work correctly at this stage.
· Stage 5: Make Choice 3 work correctly.
· Stage 6: Make Choice 4 work correctly.
· Stage 8: Make Choice 2 work correctly.
· Stage 9: Make Choice 1 work correctly.
· Stage 10: Make Choice 7 work correctly.
· Remaining stages: As you see fit.

Grading:

5. TODAY: Exercise that has array OF STRUCTURE INSTANCES.
6. TODAY: Essence of strings (do it in header make_XX stuff).
7. TODAY: File read and write (do it in .project?)
8.
1. Begin by, with your instructor,
Grading

