
 Page 1

Capstone Python Project – Features
CSSE 120, Introduction to Software Development

General instructions:

The following assumes a 3-person team. If you are a 2-person team,
see your instructor for how to deal with that.

All features must be implemented in a nice Graphical User Interface
(GUI) to which all team members must contribute.

• All input and output must be from your GUI (plus any
external devices you might use, like Roomba remotes).
There must be no input or output from/to a Console
window.

• The more different kinds of GUI widgets, the better.

• The more your follow good GUI design principles1 (and you
can explain how your GUI does so), the better.

There are green, blue, yellow (sorry, no yellow this term), and
uncolored features. Greens and blues are simpler robot ideas.
Yellows are more sophisticated robot ideas (that are more
challenging to implement). Uncolored features are open-ended
opportunities that vary wildly in difficulty.

1. The team should work collaboratively to accomplish the green
tasks at the beginning of the project. Help each other as
needed.

2. Each student must thereafter implement one blue feature.
Coordinate to determine who does which. Two-person teams
can choose any two of the three.

1 Ben Schneiderman, Eight Golden Rules of Interface Design.
https://www.cs.umd.edu/users/ben/goldenrules.html.

3. For a good score on the project, each student should also
implement some (not all!) of the uncolored features. There are
a wide variety to choice from. Talk with your instructor to help
decide which to try!

The best projects will take care to re-use each other’s GUI,
functions and data wherever practical.

Grading and demos:

The grading is based on:

• the quality of your individual contributions to the project;
• your attention to detail to the Trello board, SVN, and your

code;
• your effectiveness as a member of your team.

Due date:

The final project code is due on Monday, August 24. How to demo
the project is TBD.

https://www.cs.umd.edu/users/ben/goldenrules.html

 Page 2

Features (brief version – see long version for full details):

1. The user can connect and disconnect to the robot, after
specifying whether or not to use the simulator and if not, what
port to use for connecting. The program should behave
reasonably if the user errs (e.g. by choosing a wrong port, or
connecting to an already-connected robot).

2. The GUI indicates, for each Sprint and each team member, the
total hours that the team member worked on that Sprint. The
data for this item should be read from the files for hours-worked
that each team member must maintain, in the process folder of
the project.

3. Move autonomously, by going a specified distance in a specified
direction at a specified speed. That is, the user can set the
direction (forward, backward, spin left or spin right) and the
distance and speed (each in some reasonable units). Then, the
user can make the robot go (e.g. by pressing a Go button) and
the robot should move the specified direction for the specified
distance at the specified speed, with some reasonable accuracy.

An important by-product of this feature is to provide a good set
of functions that teammates will use for most of the
movements that they ask of the robot. The re-usability of those
functions will play a large role in determining your grade on this
feature.

4. Be tele-operated (i.e., remote-controlled, like a remote-control
car) with a Roomba remote. The user can use the d-pad to
make the robot move in any direction (forward/backward, spin
left/right) at three different speeds. See the next page for
implementation requirements.

5. Follow a curvy black line using PID control.

6. Move through a sequence of user-specified waypoints.

7. Connect an IR “hat” (or use the remote control) to the robot and
tele-operate other robots.

8. Move autonomously, by going until a specified sensor reaches a
specified threshold. Sensors should include the bump sensors
and the 4 cliff sensors, at the least.

9. Play N random notes, where the user specifies N. The notes
must not be “clipped”.

10. Follow another robot.

11. Robot composes new music.

12. Do sophisticated movements, e.g. trace a regular polygon or
parallel park as in the video at
https://www.youtube.com/watch?v=N4F0-MXK5jM.

13. Do interesting things with its internal sensors.

14. Do interesting things with computer vision (using the camera),
e.g. finding objects, using semaphores to communicate, or …

15. Do interesting things with external motors and/or servos.

16. Use swarm techniques and/or distributed algorithms to
accomplish interesting things.

17. Use parallel algorithms (in processes and/or threads, in a single
processor or across cores) to accomplish interesting things.

18. Use internet communication and/or files to do interesting
things.

19. Compose a fictitious bio for itself and/or for you.

20. Use a Leap Motion device (and accompanying Python software)
to control the robot with hand movements.

21. Interact with a different kind of robot, e.g. a quadcopter or
BERO robot.

22. Do something interesting… [You suggest what!]

https://www.youtube.com/watch?v=N4F0-MXK5jM

 Page 3

Features – with details:

1. The user can connect and disconnect to the robot, after
specifying whether or not to use the simulator and if not, what
port to use for connecting.

The program should behave reasonably if the user errs (e.g. by
choosing a wrong port, or connecting to an already-connected
robot).

2. The GUI indicates, for each Sprint and each team member, the
total hours that the team member worked on that Sprint. The
data for this item should be read from the files for hours-worked
that each team member must maintain, in the process folder of
the project.

Whoever implements this feature determines the format for the
hours-worked files, and conveys that format to her teammates.
Each team member maintains her own file per the format.

3. Move autonomously, by going a specified distance in a specified
direction at a specified speed. That is, the user can set the
direction (forward, backward, spin left or spin right) and the
distance and speed (each in some reasonable units). Then, the
user can make the robot go (e.g. by pressing a Go button) and
the robot should move the specified direction for the specified
distance at the specified speed, with some reasonable accuracy.

An important by-product of this feature is to provide a good set
of functions that teammates will use for most of the
movements that they ask of the robot.

Advanced options include:

• There are multiple implementations (any of which can be
chosen by the user), with demonstrated understanding of
when and why one is better/worse than another. For
example, one implementation is the “time” approach,
another is the “distance sensor” approach (which itself is

really a collection of approaches parameterized by the time
to wait between sensor readings), and a third is the “send a
script” approach.

• There is high accuracy for the best implementations.

• Can move linearly and angularly (hence along a curve) at the
same time, with some reasonable understanding of
“distance” and “speed” in that case.

• The motion can be interrupted by the user.

4. Be tele-operated (i.e., remote-controlled, like a remote-control
car) with a Roomba remote. The user uses the d-pad to make
the robot move in any direction (forward/backward, spin
left/right) at three different speeds:

a. Slow: 20 cm/s

b. Medium: 30 cm/s

c. Fast: 40 cm/s

Assign the Roomba remote buttons to the following actions:

• Spot: set to Slow speed
• Clean: set to Medium speed
• Max: set to Fast speed
• Hold D-pad up: move forward at the set speed
• Hold D-pad left: spin left in place at the set speed
• Hold D-pad right: spin right in place at the set speed
• Hold D-pad down: move backward at the set speed

If the user lets go of a movement button, the movement stops.

Advanced options include:

• Make the P button at the top of the remote change the
robot into sound mode. While in this mode, pressing the
remote buttons does not move the robot, but instead causes

 Page 4

the robot to play different sound tones. Pressing the P
button again goes back to movement mode.

• Make the red pause button on the remote toggle tele-
operation. With this option, the robot should always listen
for the IR signal, and when the user presses the red button,
the robot will begin tele-operation. When the user presses
the red button again, the robot should stop tele-operation
and allow other features to execute normally.

5. Follow a curvy black line using bang-bang and PID control.

See the PID video for an explanation of bang-bang and PID
control.

Assume a curvy black line about 2 inches wide, with reasonably
gentle curves, using the left front signal (for the left wheel
speed) and the right front signal (for the right wheel speed).
(You can also use other sensors if you wish.)

First implement bang-bang control. Then implement P
(proportional) control, with the P constants tuned reasonably.

Warning: The simulator is WAY different from real robots for
this feature. Start with the simulator, but realize that real robots
require SUBSTANTIAL tuning. (Their IR light sensors vary wildly
from robot to robot, and even within a robot!) You must provide
an interface to calibrate the darkness of the lines under current
lighting conditions. The human may place the robot in positions
as desired. You must not hard-code the darkness of the lines
into the program.

Advanced options include:

• Use I and D (the rest of PID). Make a line where they help.

• The user can set all the parameters at run-time, ideally even
while the robot is doing line-following.

• The line-following can be interrupted by the user.

• Uses additional sensors to enable following more challenging
lines.

• Can follow a curvy wall, using a “bump and bounce”
algorithm that is akin to bang-bang control.

• Can follow a curvy wall, using the wall sensor but (ideally)
the same PID code as for line following.

 Page 5

6. Move through a sequence of user-specified waypoints.

That is, the user can enter a sequence of (x, y) coordinates and
tells the robot to go. Then, the robot moves to each, one after
the other. (The origin of the coordinate system is where the
robot began the sequence of moves.)

Advanced options include:

• There is a nice way to enter coordinates (e.g. by clicking on a
map displayed in a window).

• The path of the robot is shown on a window as the robot
moves.

• The movement can be interrupted by the user.

• Coordinates can come from a file.

• The robot can move around obstacles as it moves from
waypoint to waypoint.

• User can control speeds as well (perhaps via pre-
specification, perhaps via tele-operation, perhaps both).

• The robot remembers paths on which it is tele-operated and
then can reproduce the paths autonomously.

• The robot keeps track of its position through ALL its
movements (even those produced by teammate’s code) and
can reproduce them from any point the user specifies.

7. Connect an IR “hat” to the robot and tele-operate other robots.

Note: This description uses IR, but other sensors might be able
to be used in a similar way. Check with your instructor before
beginning to implement this feature!

The robot can wear an IR transmitter (“hat”) accessory that
broadcasts in all directions. Program the robot to broadcast the
same IR signals as the Roomba remote. Then gather several

robots and run them in tele-operated mode, described in #6.
The robot wearing the IR hat should transmit signals to control
the other robots and lead a line dance.

Advanced options include:

• Have the robot read dance moves from a file.

• Have the robot lead a dancing and singing party. The
robot should transmit same signal as the P button on the
Roomba remote during the dance to make the robots
start singing.

IMPORTANT: You get NO credit for time spent typing in long
sequences of dance moves, notes, or long periods of time
transliterating a song to the Create’s MIDI note system. Focus
on the interesting things you can do via the programming.

8. Move autonomously, by going until a specified sensor reaches a
specified threshold. Sensors should include the bump sensors
and the 4 cliff sensors, at the least

In particular, the user can set the speed and which bumpers to
use (both, just-left or just-right). Then, the user tells the robot
to start, at which point the robot moves until the relevant
bumper(s) are pressed.

Likewise, the user can set the speed, which of the four cliff
sensors to use, and a “darkness level.” Then, the user tells the
robot to start, at which point the robot moves until the specified
sensor sees sufficient “darkness”.

Advanced options include:

• The user can choose from sensors beyond the bump and cliff
sensors.

• The user can choose one or more sensors to be active in
determining when to stop. For example, the user might
choose the left bump sensor, the right bump sensor, or both.

 Page 6

• The user can choose from different kinds of sensors
(combining bump and cliff sensors, for example), if a variety
of ways.

• The “stopping condition” can be more than just a threshold
whose value is exceeded.

• The best implementations might require multiple sensors
mixed in interesting ways, e.g. the infrared hears 100
followed a second later by 200.

• Perhaps the coolest implementation would allow the user to
supply a function definition (written “on the fly”) for the
stopping condition.

• Play N random notes, where the user specifies N. The
notes must not be “clipped”. Hint: Use the
song_playing sensor appropriately to avoid clipping.

The user specifies the length of time each note should be played
-- either a fixed length of time, or a range from which the time
should be chosen at random.

9. Follow another robot.

Uses the camera, or uses IR emitters with black tape over the IR
sensor for directionality, or the other robot sends codes to
indicate directionality.

10. Compose music. The robot composes the music, not you,
according to the principles of music theory, and plays the music.
Option: do likewise for dances and/or light shows.

11. Do sophisticated movements, e.g. trace a regular polygon or
parallel park as in the video at
https://www.youtube.com/watch?v=N4F0-MXK5jM.

12. Do interesting things with its internal sensors. One simple
example: there is a sensor that, perhaps surprisingly, can tell

when a robot is "stuck" even when the robot is attempting to
move BACKWARDS.

13. Do interesting things with computer vision (using the camera),
e.g. finding objects, using semaphores to communicate, or …

14. Do interesting things with external motors and/or servos.

15. Offer Rogerian psychotherapy, ala Eliza
(http://en.wikipedia.org/wiki/ELIZA).

16. Use swarm techniques and/or distributed algorithms to
accomplish interesting things.

17. Use parallel algorithms (in processes and/or threads, in a single
processor or across cores) to accomplish interesting things.

18. Use internet communication and/or files to do interesting
things.

19. Compose a fictitious bio for itself and/or for you.

20. Use a Leap Motion device (and accompanying Python software)
to control the robot with hand movements.

21. Interact with a different kind of robot, e.g. a quadcopter or
BERO robot.

22. Do something interesting… [You suggest what!]

https://www.youtube.com/watch?v=N4F0-MXK5jM
http://en.wikipedia.org/wiki/ELIZA

