
 Page 1

Capstone Python Project – Features
CSSE 120, Introduction to Software Development

General instructions:

The following assumes a 3-person team. If you are a 2-person or 4-
person team, see your instructor for how to deal with that.

All features must be implemented in a nice Graphical User Interface
(GUI) to which all team members must contribute.

• All input and output must be from your GUI (plus any
optional external devices you might use, like Wiimotes).
There must be no input or output from/to a Console
window (except for debugging purposes).

• The more different kinds of GUI widgets, the better.

• The more your follow good GUI design principles1 (and you
can explain how your GUI does so), the better.

There are green, blue, yellow, and uncolored features. Greens and
blues are simpler robot ideas. Yellows are more sophisticated robot
ideas (that are more challenging to implement). Uncolored features
are open-ended opportunities that vary wildly in difficulty.

Each student must implement one green feature, one blue feature
and one yellow feature. For a good score, students must also
implement some (not all!) of the uncolored features.

Many features contain “advanced options”. Students who want a
high grade will want to implement many of these. However, do not
feel obliged to implement all of them, since implementing uncolored
features is another way to earn a high score.

1 Ben Schneiderman, Eight Golden Rules of Interface Design.
https://www.cs.umd.edu/users/ben/goldenrules.html.

The best projects will take care to re-use each other’s GUI, functions
and data wherever practical.

Your grade is based on the features you implement, the process you
use in doing so, the quality of your code, and more. See the grading
rubric for details.

https://www.cs.umd.edu/users/ben/goldenrules.html

 Page 2

Features (brief version – see long version for full details):

1. The user can connect and disconnect to the robot, after
specifying whether or not to use the simulator and if not, what
port to use for connecting. The program should behave
reasonably if the user errs (e.g. by choosing a wrong port, or
connecting to an already-connected robot).

2. The GUI indicates, for each Sprint and each team member, the
total hours that the team member worked on that Sprint. The
data for this item should be read from the files for hours-worked
that each team member must maintain, in the process folder of
the project.

3. Play N random notes, where the user specifies N. The notes
must not be “clipped”.

4. Be tele-operated (i.e., remote-controlled, like a remote-control
car). The user can make the robot move in any direction
(forward/backward, spin left/right) at any speed.

5. Move autonomously, by going a specified distance in a specified
direction at a specified speed. That is, the user can set the
direction (forward, backward, spin left or spin right) and the
distance and speed (each in some reasonable units). Then, the
user can make the robot go (e.g. by pressing a Go button) and
the robot should move the specified direction for the specified
distance at the specified speed, with some reasonable accuracy.

An important by-product of this feature is to provide a good set
of functions that teammates will use for most of the
movements that they ask of the robot.

6. Move autonomously, by going until a specified sensor reaches a
specified threshold. Sensors should include the bump sensors
and the 4 cliff sensors, at the least.

7. Follow a curvy black line using PID control.

8. Move through a sequence of user-specified waypoints.

9. Hold a conversation with another robot.

10. Follow another robot.

11. Sing and dance with a light show.

12. Compose music.

13. Do sophisticated movements, e.g. trace a regular polygon or
parallel park as in the video at
https://www.youtube.com/watch?v=N4F0-MXK5jM.

14. Do interesting things with its internal sensors.

15. Do interesting things with computer vision (using the camera),
e.g. finding objects, using semaphores to communicate, or …

16. Do interesting things with external motors and/or servos.

17. Offer Rogerian psychotherapy, ala Eliza
(http://en.wikipedia.org/wiki/ELIZA).

18. Use swarm techniques and/or distributed algorithms to
accomplish interesting things.

19. Use parallel algorithms (in processes and/or threads, in a single
processor or across cores) to accomplish interesting things.

20. Use internet communication and/or files to do interesting
things.

21. Compose a fictitious bio for itself and/or for you.

22. Use a Leap Motion device (and accompanying Python software)
to control the robot with hand movements.

23. Interact with a different kind of robot, e.g. a quadcopter or
BERO robot.

24. Do something interesting… [You suggest what!]

https://www.youtube.com/watch?v=N4F0-MXK5jM
http://en.wikipedia.org/wiki/ELIZA

 Page 3

Features – with details:

1. The user can connect and disconnect to the robot, after
specifying whether or not to use the simulator and if not, what
port to use for connecting.

The program should behave reasonably if the user errs (e.g. by
choosing a wrong port, or connecting to an already-connected
robot).

2. The GUI indicates, for each Sprint and each team member, the
total hours that the team member worked on that Sprint. The
data for this item should be read from the files for hours-worked
that each team member must maintain, in the process folder of
the project.

Whoever implements this feature determines the format for the
hours-worked files, and conveys that format to her teammates.
Each team member maintains her own file per the format.

3. Play N random notes, where the user specifies N. The notes
must not be “clipped”. Hint: Use the song_playing sensor
appropriately to avoid clipping.

Additionally, the use can specify the length of time each note
should be played -- either a fixed length of time, or a range from
which the time should be chosen at random.

4. Be tele-operated (i.e., remote-controlled, like a remote-control
car). The user can make the robot move in any direction
(forward/backward, spin left/right) at any speed, stopping her
whenever the user wants. The simplest implementation would
use buttons for the movements.

Advanced options include:

• Uses easy-to-operate interfaces like keys (without interfering
with other features!), gamepads, wiimotes, or other remote-
control devices (perhaps wireless).

• Can move in curves.

• There is more than one user interface for tele-operation (e.g.
buttons and keys).

• The user can disable/enable tele-operation.

5. Move autonomously, by going a specified distance in a specified
direction at a specified speed. That is, the user can set the
direction (forward, backward, spin left or spin right) and the
distance and speed (each in some reasonable units). Then, the
user can make the robot go (e.g. by pressing a Go button) and
the robot should move the specified direction for the specified
distance at the specified speed, with some reasonable accuracy.

An important by-product of this feature is to provide a good set
of functions that teammates will use for most of the
movements that they ask of the robot.

Advanced options include:

• There are multiple implementations (any of which can be
chosen by the user), with demonstrated understanding of
when and why one is better/worse than another. For
example, one implementation is the “time” approach,
another is the “distance sensor” approach (which itself is
really a collection of approaches parameterized by the time
to wait between sensor readings), and a third is the “send a
script” approach.

• There is high accuracy for the best implementations.

• Can move linearly and angularly (hence along a curve) at the
same time, with some reasonable understanding of
“distance” and “speed” in that case.

• The motion can be interrupted by the user.

 Page 4

6. Move autonomously, by going until a specified sensor reaches a
specified threshold. Sensors should include the bump sensors
and the 4 cliff sensors, at the least

In particular, the user can set the speed and which bumpers to
use (both, just-left or just-right). Then, the user tells the robot
to start, at which point the robot moves until the relevant
bumper(s) are pressed.

Likewise, the user can set the speed, which of the four cliff
sensors to use, and a “darkness level.” Then, the user tells the
robot to start, at which point the robot moves until the specified
sensor sees sufficient “darkness”.

Advanced options include:

• The user can choose from sensors beyond the bump and cliff
sensors.

• The user can choose one or more sensors to be active in
determining when to stop. For example, the user might
choose the left bump sensor, the right bump sensor, or both.

• The user can choose from different kinds of sensors
(combining bump and cliff sensors, for example), if a variety
of ways.

• The “stopping condition” can be more than just a threshold
whose value is exceeded.

• The best implementations might require multiple sensors
mixed in interesting ways, e.g. the infrared hears 100
followed a second later by 200.

• Perhaps the coolest implementation would allow the user to
supply a function definition (written “on the fly”) for the
stopping condition.

7. Follow a curvy black line using bang-bang and PID control.

See the PID video for an explanation of bang-bang and PID
control.

Assume a curvy black line about 2 inches wide, with reasonably
gentle curves, using the left front signal (for the left wheel
speed) and the right front signal (for the right wheel speed).
(You can also use other sensors if you wish.)

First implement bang-bang control. Then implement P
(proportional) control, with the P constants tuned reasonably.

Warning: The simulator is WAY different from real robots for this
feature. Start with the simulator, but realize that real robots
require SUBSTANTIAL tuning. (Their IR light sensors vary wildly
from robot to robot, and even within a robot!)

Advanced options include:

• Auto-calibrates the darkness of the lines under current
lighting conditions by the human placing the robot in
positions as desired (with no changes to the program needed
for this process).

• Use I and D (the rest of PID). Make a line where they help.

• The user can set all the parameters at run-time, ideally even
while the robot is doing line-following.

• The line-following can be interrupted by the user.

• Uses additional sensors to enable following more challenging
lines.

• Can follow a curvy wall, using a “bump and bounce”
algorithm that is akin to bang-bang control.

• Can follow a curvy wall, using the wall sensor but (ideally)
the same PID code as for line following.

 Page 5

8. Move through a sequence of user-specified waypoints.

That is, the user can enter a sequence of (x, y) coordinates and
tells the robot to go. Then, the robot moves to each, one after
the other. (The origin of the coordinate system is where the
robot began the sequence of moves.)

Advanced options include:

• There is a nice way to enter coordinates (e.g. by clicking on a
map displayed in a window).

• The path of the robot is shown on a window as the robot
moves.

• The movement can be interrupted by the user.

• Coordinates can come from a file.

• The robot can move around obstacles as it moves from
waypoint to waypoint.

• User can control speeds as well (perhaps via pre-
specification, perhaps via tele-operation, perhaps both).

• The robot remembers paths on which it is tele-operated and
then can reproduce the paths autonomously.

• The robot keeps track of its position through ALL its
movements (even those produced by teammate’s code) and
can reproduce them from any point the user specifies.

9. Hold a conversation with another robot.

Note: This description uses IR, but other sensors might be able
to be used in a similar way. Check with your instructor before
beginning to implement this feature!

As a stepping-stone to conversation, first implement the
following:

• Pressing a button makes the robot start (and continue
indefinitely) sending a signal specified in an entry box.
This action must not “block”.

• Pressing another button makes the robot stop sending
that signal.

• Pressing a third button makes the robot start listening
and then display what signal it hears, once it hears
something. This action is permitted to “block”.

Then implement a simple protocol per the Protocol video that
allows two robots to “converse” by sending and hearing signals.

Advanced options:

• The listening and sending can be interrupted by the user.

• Uses codes to send letters, words and entire phrases, per a
coding system read from a file.

• Encrypts and decrypts (perhaps as simple as Caesar’s cipher,
or as complicated as a public key encryption system).

• Does a more advanced protocol, e.g. handshaking to identify
itself.

 Page 6

10. Follow another robot.

Uses the camera, or uses IR emitters with black tape over the IR
sensor for directionality, or the other robot sends codes to
indicate directionality, or

11. Sing and dance with a light show.

IMPORTANT: You get NO credit for time spent typing in long
sequences of notes, or long periods of time transliterating a
song to the Create’s MIDI note system. Focus on the interesting
things you can do via the programming.

Options include:

• Songs of more than 16 notes.

• Plays MIDI from a file.

• Does the light show while dancing and singing, perhaps
choreographed.

12. Compose music. Composes music – randomly, or with principles
from music theory. Plays the music. Option: do likewise for
dances and/or light shows.

13. Do sophisticated movements, e.g. trace a regular polygon or
parallel park as in the video at
https://www.youtube.com/watch?v=N4F0-MXK5jM.

14. Do interesting things with its internal sensors. One simple
example: there is a sensor that, perhaps surprisingly, can tell
when a robot is "stuck" even when the robot is attempting to
move BACKWARDS.

15. Do interesting things with computer vision (using the camera),
e.g. finding objects, using semaphores to communicate, or …

16. Do interesting things with external motors and/or servos.

17. Offer Rogerian psychotherapy, ala Eliza
(http://en.wikipedia.org/wiki/ELIZA).

18. Use swarm techniques and/or distributed algorithms to
accomplish interesting things.

19. Use parallel algorithms (in processes and/or threads, in a single
processor or across cores) to accomplish interesting things.

20. Use internet communication and/or files to do interesting
things.

21. Compose a fictitious bio for itself and/or for you.

22. Use a Leap Motion device (and accompanying Python software)
to control the robot with hand movements.

23. Interact with a different kind of robot, e.g. a quadcopter or
BERO robot.

24. Do something interesting… [You suggest what!]

https://www.youtube.com/watch?v=N4F0-MXK5jM
http://en.wikipedia.org/wiki/ELIZA

