CSSE 120 Preparation-Summary Quiz-08

Name: **SOLUTION**

Range expressions:

1. What is the output of the following code snippet?

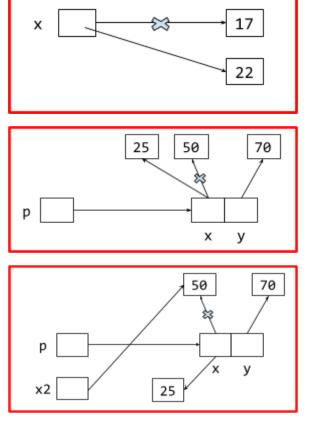
for k in range(200, 215):	200 201 202 214
print(k)	on separate lines

- Modify the code above so that it also prints the 215 as part of the output. *Change the 215 to 216.*
- 3. Joe wants his **for** loop to output the numbers counting DOWN from 100 to *n*, inclusive, for some number *n* smaller than 100. He writes:

```
for k in range(100, n - 1, -1):
    print(k)
```

He correctly remembered the step of -1, but made another small bug. Find and fix it. Change the n to n - 1.

Box and pointer diagrams:


4. Draw a box-and-pointer diagram for the following statements. Recall that you should cross out the arrows rather than erase them:

$$x = 17$$

 $x = x + 5$

5. Draw a box-and-pointer diagram for the following statements.

6. Draw a box-and-pointer diagram for the following statements.

What is the value of x2 after this code runs? 50

Use your box and pointer diagram to help. (Suggestion: ask for the answer to the above and use it to check your diagram.)

npler	nenting Classes:	
7.	What gets printed when the code to the right runs?	<pre>class Point(object):</pre>
	999 2	<pre>definit(self, x, y): self.x = x self.y = y</pre>
8.	Every object in Python has two things: what are they?	
	(Put a mark by TWO of the following items.)	<pre>def main(): point = Point(1, 2)</pre>
	A type	<pre>bLah(point) print(point.x, point.y)</pre>
	A value	
	An accumulator	<pre>def blah(point): point.x = 999 point = Point(33, 44)</pre>
9.	In object-oriented programming, you can create custom classes. What is a <i>class</i> ?	main()
	A collection of students <i>A custom type</i>	A socioeconomic group
10.	What is the name of the <i>constructor method</i> in Python? (don't forget the underscores)init

- 11. Recall that classes have a *name, instance variables,* and *methods*. Here (below and to the right) is the definition of part of a simple class that you saw in the video:
 - a. Give an example from the code of an *instance variable*:
 - x when used as self.xy when used as self.y
 - b. Give an example from the code of a *method*: move_by __init__
 - c. What is the *name* of the class? _____ Point ____
 - d. What *keyword* was used to define the class? _ class
- 12. Continuing the previous problem (with its *Point* class), consider the two lines of code shown to the right. When those two lines of code run, the execution of the second line brings us to Location 1 (see the *Point* class above to find Location 1). **At Location 1, what are the values of:**

```
self.x = self.x + dx
self.y = self.y + dy
```

def __init__(self, x, y):

def move_by(self, dx, dy):

self.x = x

self.y = y

Location 1

class Point(object):

```
p = Point(40, 50)
p.move_by(1, 2)
```

self ____ The object constructed by Point(40, 50);
the object to which move_by is being applied; the object in front of the DOT;
the object referred to in the 2nd set of code as p. (Grader: Any of these, or just p is OK.)

dy 2 self.y 50 (will be set to 52 by move_by)