
CSSE 120 Session 4: Conditionals and the Accumulator Pattern Page 1 of 4

Your name:________ SOLUTION _________________

1. You are about to write a method that does some complex math. As usual, you start by doing a

concrete example by hand. What are some things you should do? Check all that apply:

_____ Choose your numbers to be big and complicated.

YES Choose numbers that avoid symmetry.

YES Give names to the relevant items.

YES Track how you calculate the answer by hand.

YES Use this example as a unit test that you write first before writing your code.

In the following problems, consider the two code snippets below. They are intended to indicate

whether or not the given grade is a Passing or Failing grade, where 70 is the lowest Passing grade

Snippet A:

if grade >= 70:

print "pass"

if grade < 70:

print "fail"

Snippet B:

if grade >= 70:

print "pass"

else:

print "fail"

2. Given the same value for grade,

the snippets produce the same output. True False (circle your choice)

3. Given the same value for grade, which snippet runs faster? (Circle your choice.)

The one on the LEFT The one on the RIGHT Neither (they are equally fast)

4. Which snippet is better? (Circle your choice.)

The one on the LEFT The one on the RIGHT Neither (they are equally good)

5. One of the most important reasons to use the appropriate form in problems like the above is

(check all that apply):

YES If you use the inappropriate form at a job interview, you will embarrass yourself

and not get the job.

YES If you use the inappropriate form at a job interview, you will embarrass yourself

and not get the job.

YES If you use the inappropriate form at a job interview, you will embarrass yourself

and not get the job.

CSSE 120 Session 4: Conditionals and the Accumulator Pattern Page 2 of 4

6. In the space to the right, write code for a

function that has a single parameter whose

value must be one of the following letter

grades:

"A" "B" "C"
(everyone gets a passing grade in this function!)

The function returns the value of the letter grade
(4 for an A, 3 for a B, 2 for a C).

def grade(letter):

if grade == "A":

return 4

elif grade == "B":

return 3

else:

return 2

[Doing the IF’s in a different order, for example

“C” then “A”, is also correct.]

7. In the box below, write an implementation of a function is_odd that takes a non-negative

integer and returns True if the integer is odd, and False otherwise.

Hint: Think about the expression X % 2 and what it evaluates to when X is odd,

and when X is even. For example, to what do the following evaluate?

17 % 2 18 % 2 371934 % 2? 12345 % 2

def is_odd(n):

if n % 2 == 1:

return True

else:

return False

A better solution is:

return n % 2 == 1

Make sure that you see why this solution is equivalent to the above solution. (Think

about the two cases, and what gets returned in each case.)

CSSE 120 Session 4: Conditionals and the Accumulator Pattern Page 3 of 4

8. Suppose that you are given a function sum_of_digits that takes a non-negative integer and

returns the sum of the digits in that integer. For example:

sum_of_digits(81323) returns 8 + 1 + 3 + 2 + 3, which is 17.

Suppose that you are also given a function is_odd that takes a non-negative integer and

returns True if the integer is odd, and False otherwise. For example:

is_odd(17) returns True and is_odd(147204) returns False

In the box below, write an implementation of a function count_odd_digit_sums that takes

a non-negative integer m and returns the number of integers X from m to (2 times m) + 1,

inclusive, for which the sum-of-digits of (X squared) is odd. For example:

count_odd_digit_sums(5) returns 5 because:

5 squared is 25, whose sum of digits is 7, which is odd.

6 squared is 36, whose sum of digits is 9, which is odd.

7 squared is 49, whose sum of digits is 13, which is odd.

8 squared is 64, whose sum of digits is 10, which is NOT odd.

9 squared is 81, whose sum of digits is 9, which is odd.

10 squared is 100, whose sum of digits is 1, which is odd.

11 squared is 121, whose sum of digits is 4 which is NOT odd.

Your solution MUST use (i.e. call) the functions sum_of_digits and is_odd appropriately.

As in ALL problems through Exam 1, you may NOT use the multiple-argument form of RANGE.

def count_odd_digit_sums(m):

count = 0

for k in range(((2 * m) + 1) - m) + 1):

number = k + m

number_squared = number ** 2

sum_digits = sum_of_digits(number_squared):

if is_odd(sum_digits) == True:

count = count + 1

return count

The above solution is more verbose than an experienced software developer would write.

However, for more complicated problems it is often helpful to compute intermediate values (per

your solved-examples-by-hand), give them names, and build up a solution from those named

values. The next page shows a “cleaner” solution.

CSSE 120 Session 4: Conditionals and the Accumulator Pattern Page 4 of 4

Here is a “cleaner” solution:

def count_odd_digit_sums(m):

count = 0

for k in range(m + 2):

if is_odd(sum_of_digits((k * m) ** 2):

count = count + 1

return count

