
Page 1 of 14

Exam 2 – Practice Problems for the Paper-and-Pencil portion
SOLUTION (check these against your answers page by page after attempting each page)

Exam 2 will assess material covered in Sessions 1
through 14. The paper-and-pencil part will draw
problems especially from the following concepts.
The numbers in the brackets at the beginning of
the item are problems that let you practice that
concept.

Problems may include tracing or writing code (as
well as questions of other forms, like True/False
and multiple choice).

• [1, 2, 4, 15, 17] Scope, especially scope
inside a method.

• [1, 4, 5, 17] Flow of control through function
calls and returns. Including calls within
expressions, e.g.

 print(foo1(...), foo2(...)) or

 z = foo1(...) + foo2(...) + foo1(...) or

 w = foo1(foo3(...) + foo4(...) + ...)

Especially problems that assess the above by
tracing code by hand.

• [3, 6, 11 - 14] Range expressions:
All 3 forms.

• [5, 7 - 11, 16] Indexing into a sequence,
especially for the 1st and last items in the
sequence. Lists, tuples and strings. Out of
bounds errors, including (failed) attempts to
accumulate by statements like this WRONG
code:

s = []

for k in range(...):

 x[k] = ...

• [11 – 14, 18] Code that loops using a range
statement and sums, counts, or accesses
items in a sequence. Especially problems that
assess the above by tracing code by hand.

• [11 - 14] Writing simple functions that loop
through a sequence and:

o access (e.g., sum/count),
doing all or part of the sequence,
forwards or backwards

o find

o accumulate

o get max or min

o access two places in the sequence in
each iteration of the loop

o access two sequences in parallel

as well as combinations of the above.

• [4, 17] Tracing by hand code that includes
method calls on objects from a class whose
code is given.

The actual exam’s paper-and-pencil part will be
much shorter than this collection of practice
problems. That said, all of these practice
problems are excellent practice for Exam 2.

Pay special attention to Problems:

3 4 5 11 – 14 and 17 – 18

since they summarize many of the concepts and
are in forms that we often use for exams.

Also be sure to review your Exam 1 paper-and-
pencil problems, since you may see similar
questions on some of those concepts.

Page 2 of 14

1. Consider the code snippets defined below. They are contrived examples with poor style but will run
without errors. For each, what does it print when main runs? (Each is an independent problem. Pay
close attention to the order in which the statements are executed.)

Prints: main 1 5 3 Prints: main 1 5 3 Prints: 1 5 3

 foo 1 5 3 foo 1 5 3 foo 1 3 5

foo 2 66 77 88 99 foo 2 66 77 88 99 foo 2 66 77 88 99

 main 2 5 3 main 2 5 3 main 2 5 3

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(a, b):

 print('foo 1', a, b)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(y, x)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

Page 3 of 14

2. Consider the code snippet to the right. Both print statements are wrong.

• Explain why the first print statement (in main) is wrong.

The name z in main is not defined.
(The z in foo has nothing to do with the z in main.)

• Explain why the second print statement (in foo) is wrong.

The name x in foo is not defined.
(The x in main has nothing to do with the x in foo.)

3. Consider the code snippet below. It
is a contrived example with poor
style, but it will run without errors.
What does it print when it runs?

Write your answer in the box to the
right.

def main():

 x = 5

 foo(x)

 print(z)

def foo(a):

 print(x)

 z = 100

 return z

 b = [44]

 a = (50, 30, 60, 77)

 x = 3

 for k in range(len(a)):

 b = b + [a[x - k]]

 print(k, b)

 print('A.', a)

 print('B.', b)

 print('X.', x)

Output: (I have included some extra spaces to make the
answer easier to read.)

0 [44, 77]

1 [44, 77, 60]

2 [44, 77, 60, 30]

3 [44, 77, 60, 30, 50]

A. (50, 30, 60, 77)

B. [44, 77, 60, 30, 50]

X. 3

Page 4 of 14

4. Consider the code on the page to the right of this page. It is a contrived example with poor style but
will run without errors. In this problem, you will trace the execution of the code. As each location is
encountered during the run, in the table below:

• CIRCLE each variable that is defined at that location.

• WRITE the VALUE of each variable that you circled directly BELOW the circle.

For example, the run defines the functions and then calls main, as usual. The first of the eleven locations to be
encountered is Location 8. At Location 8, the only variable defined is a, with value 44 at that point of the program’s
run. So, on the row for Location 8, you would circle a and write 44 directly below it.

Note that you fill out the table in the order that the locations are encountered, NOT from top to bottom. ASK
FOR HELP IF YOU DO NOT UNDERSTAND WHAT THIS PROBLEM ASKS YOU TO DO.

When Location 1
is encountered

the 1st time

a
10

m m1.a m1.m m2.a m2.m self.a self.m

When Location 2
is encountered

the 1st time

a
10

m m1.a m1.m m2.a m2.m self.a
3

self.m
15

When Location 1
is encountered

the 2nd time

a
22

m m1.a m1.m m2.a m2.m self.a self.m

When Location 2
is encountered

the 2nd time

a
22

m m1.a m1.m m2.a m2.m self.a
3

self.m
27

Location

3

a m m1.a m1.m m2.a m2.m self.a
3

self.m
42

Location

4

a m m1.a m1.m m2.a m2.m self.a
103

self.m
42

Location

5

a
44

m m1.a m1.m m2.a m2.m self.a self.m

Location
6

a
6

m
31

m1.a m1.m m2.a m2.m self.a self.m

Location

7

a
6

m
31

m1.a
3

m1.m
42

m2.a
3

m2.m
27

self.a self.m

Location

8

a
44

m m1.a m1.m m2.a m2.m self.a self.m

Location

9
a
44

m m1.a m1.m m2.a
3

m2.m
42

self.a self.m

Location

10
a
44

m m1.a m1.m m2.a
103

m2.m
42

self.a self.m

Location 11 a m m1.a m1.m m2.a m2.m self.a self.m

Page 5 of 14

Showing your work (by marking up the code, drawing a box-and-pointer diagram, or any other way
you wish) is the best way to allow for partial credit.

Feel free to use a separate blank sheet of paper if you like.

ASK FOR HELP IF YOU DO NOT UNDERSTAND
WHAT THIS PROBLEM ASKS YOU TO DO.

The locations are encountered in the following order:

1. Location 8

2. Location 5

3. Location 6

4. Location 1 the 1st time

5. Location 2 the 1st time

6. Location 1 the 2nd time

7. Location 2 the 2nd time

8. Location 7

9. Location 9

10. Location 3

11. Location 4

12. Location 10

13. Location 11

class Mini(object):

 def __init__(self, a):

 #### Location 1

 self.a = 3

 self.m = a + 5

 #### Location 2

 def blah(self):

 #### Location 3

 self.a = self.a + 100

 #### Location 4

def foo(a):

 #### Location 5

 a = 6

 m = 31

 #### Location 6

 m1 = Mini(10)

 m2 = Mini(22)

 m1.m = m1.m + m2.m

 # Location 7

 return m1

def main():

 a = 44

 #### Location 8

 m2 = foo(a)

 #### Location 9

 m2.blah()

 #### Location 10

main()

Location 11

Page 6 of 14

5. Consider the code snippet below. It is a contrived example with poor style, but it will run without
errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():

 a = alpha(3)

 print()

 b = beta(2)

 print()

 g = gamma(6)

 print()

 c = alpha(beta(10))

 print()

 print("main!", a, b, g, c)

def alpha(x):

 print("Alpha!")

 return x + 7

def beta(y):

 print("Beta!")

 return 5 + alpha(y + 10)

def gamma(z):

 print("Gamma!", alpha(1), beta(1))

 return (alpha(z) + beta(z - 3)

 + alpha(z + 2))

main()

Output: (I have included some extra
spaces to make the answer easier to
read.)

Alpha!

Beta!

Alpha!

Alpha!

Beta!

Alpha!

Gamma! 8 23

<no space really here>

Alpha!

Beta!

Alpha!

Alpha!

Beta!

Alpha!

Alpha!

main! 10 24 53 39

Page 7 of 14

6. For each of the following range expressions, write the sequence that it generates. Write empty if
the generated sequence is the empty sequence (i.e., has no items in it). We have done the first two
for you as examples.

• range(6) generates the sequence: 0 1 2 3 4 5

• range(6, 6) generates the sequence: empty (nothing, the empty range)

• range(3, 6) generates the sequence: 3 4 5

• range(12, 6) generates the sequence: empty (nothing, the empty range)

• range(3, 8, 1) generates the sequence: 3 4 5 6 7

• range(3, 8, 2) generates the sequence: 3 5 7

• range(4, 8, 2) generates the sequence: 4 6

• range(5, 14, 3) generates the sequence: 5 8 11

• range(5, 15, 3) generates the sequence: 5 8 11 14

• range(20, 15, -1) generates the sequence: 20 19 18 17 16

• range(20, 15) generates the sequence: empty (nothing, the empty range)

• range(15, 20, -1) generates the sequence: empty (nothing, the empty range)

• range(20, 17, -3) generates the sequence: 20

• range(20, 16, -3) generates the sequence: 20 17

• range(20, 20, -3) generates the sequence: empty (nothing, the empty range)

• range(5, 0, -1) generates the sequence: 5 4 3 2 1

• range(5, -1, -1) generates the sequence: 5 4 3 2 1 0

• range(5, -1, -3) generates the sequence: 5 2

• range(5, -2, -3) generates the sequence: 5 2 -1

• range(8) generates the sequence: 0 1 2 3 4 5 6 7

• range(100, 100) generates the sequence: empty (nothing, the empty range)

Page 8 of 14

7. Consider the list X = [3, 7, 1, 0, 99, 5].

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(len(X)) would print: 6

• print(X[0]) would print: 3

• print(X[1]) would print: 7

• print(X[5]) would print: 5

• print(X[6]) would print: ERROR

• print(X[-1]) would print: 5

• print(X[-6]) would print: 3

• print(X[-7]) would print: ERROR

• print(X[len(X)]) would print: ERROR

• print(X[len(X) - 1]) would print: 5

8. Consider the tuple T = (4, 10, 3).

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(len(T)) would print: 3

• print(T[0]) would print: 4

• print(T[2]) would print: 3

• print(T[3]) would print: ERROR

• print(T[-1]) would print: 3

• print(T[len(T)]) would print: ERROR

• print(T[len(T) - 1]) would print: 3

Page 9 of 14

9. Consider the string s = 'hello'.

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(len(s)) would print: 5

• print(s[0]) would print: h

• print(s[4]) would print: o

• print(s[5]) would print: ERROR

• print(s[len(s)]) would print: ERROR

• print(s[len(s) – 1]) would print: o

• print(s[-1]) would print: o

Yes or No (circle your answer)

10. Consider the following code snippet:

X = []

X[0] = 100

X[1] = 77

X[2] = 88

Would the above statements generate an exception (error)? Yes or No (circle your answer)

11. Consider a sequence named X. Write statements that would:

• Print the first (beginning) item of the sequence:

print(X[0])

• Print the last item of the sequence:

print(X[len(X) - 1]) or print(X[-1])

• Print all the items of the sequence, one by one, from beginning to end:

Note: in this and the following sub-problems of this problem, the statement inside the loop
should be something like print(X[k]). That is, let the range statement do all the heavy lifting.

for k in range(len(X)):

 print(X[k])

 or

for item in X:

 print(item)

Page 10 of 14

Note: the latter form is more elegant and hence the choice of an experienced Python software
developer. However, there are problems in which one needs the index (here, k) in the body of the
loop; those problems require the first form above. Either form is acceptable for our course.

• Print all the items of the sequence, one by one, from end to beginning:

for k in range(len(X) – 1, -1, -1):

 print(X[k])

 or

for k in range(-1, -len(X) - 1, -1):

 print(X[k])

There are other alternatives as well that put the heavy lifting into the argument for the index
inside the body of the loop, e.g.:

for k in range(len(X)):

 print(X[len(X) – k – 1])

• Print all the items at odd indices of the sequence, one by one, beginning to end:

for k in range(1, len(X), 2):

 print(X[k])

There are other alternatives as well, but following one is inferior because it takes roughly twice as
long to run as the above solution:

for k in range(len(X)):

 if k % 2 == 1:

 print(X[k])

• Print all the items of the sequence that are odd, one by one, beginning to end (for this problem,
assume that the sequence contains only positive integers):

for k in range(len(X)):

 if X[k] % 2 == 1:

 print(X[k])

Notice how different this problem is from the previous (but similar-sounding) one!

• Starting at the second-to-last item in the sequence and going backwards, print every 4th item in
the sequence:

for k in range(len(X) – 2, -1, -4):

Page 11 of 14

 print(X[k])

 or for k in range(-2, -len(X) - 1, -4):

 print(X[k])

12. Write a function (including its def line) named count_small that takes a sequence of numbers
and a number Z, and returns the number of items in the sequence that are less than Z. For example:

count_small([8, 2, 7, 10, 20, 1], 7) returns 2 (since 2 and 1 are less than 7)

count_small([8, 2, 7, 10, 20, 1], -4) returns 0

def count_small(sequence, z):

 count = 0

 for k in range(len(sequence)):

 if sequence[k] < z:

 count = count + 1

 return count

or

 def count_small(sequence, z):

 count = 0

 for number in sequence:

 if number < z:

 count = count + 1

 return count

13. Write a function (including its def line) named get_all_at_even_indices that takes a
sequence and returns a list of the items in the sequence at even-numbered indices. For example:

get_all_at_even_indices([8, 2, 7, 10, 20]) returns [8, 7, 20]

get_all_at_even_indices('abcdefgh') returns ['a', 'c', 'e', 'g']

def get_all_at_even_indices(sequence):

 items = []

 for k in range(0, len(sequence), 2):

 items.append(sequence[k])

 return items

The statement in the above:

Page 12 of 14

items.append(sequence[k]
could have been written as:

items = items + [sequence[k]]

but that would be a less efficient solution. The append method applies only to lists, so if a
problem requires building a string or tuple, you would normally use the + operator approach.
(Or, better if the number of items is large, convert the string/tuple to a list, use append to build
the list, then convert the list to the required string/tuple.)

14. Write a function (including its def line) named get_first_even_x that takes a sequence of
rg.Circle objects and returns the radius of the first rg.Circle in the sequence whose
center’s x-coordinate is even, or -999 if there are no such circles in the sequence. For example:

get_first_even_x ([rg.Circle(rg.Point(115, 20), 50),

 rg.Circle(rg.Point(8, 1), 33),

 rg.Circle(rg.Point(12, 2), 22)]) returns 33

get_first_even_x ([rg.Circle(rg.Point(115, 20), 50),

 rg.Circle(rg.Point(37, 22), 33),

 rg.Circle(rg.Point(11, 2), 22)]) returns -999

 def get_first_even_x(circles):

 for k in range(len(circles)):

 circle = circles[k]

 if circle.center.x % 2 == 0:

 return circle.radius

 return -999

Note how I chose to give a name to circles[k], that is, to call it circle (the singular form of
the sequence named circles.) Consider doing so routinely, since it makes the following code
be more familiar (no square brackets).

CRITICAL: Note that the return -999 is AFTER the loop, not inside the loop!

15. Consider the following two candidate function definitions:

def foo():

 print('hello')

def foo(x):

 print(x)

Here is a nice alternative:

def get_first_even_x(circles):

 for circle in circles:

 if circle.center.x % 2 == 0:

 return circle.radius

 return -999

Page 13 of 14

• Which is “better”? Circle the better function.

• Briefly explain why you circled the one you did.

The form to the right allows the caller of the function to print ANYTHING, while the
form to the left is useful only for printing 'hello'. In general, adding parameters to
a function makes the function more powerful.

16. What is the difference between the following two expressions?
numbers[3] numbers = [3] The expression on the left refers to the index 3 item in

the sequence called numbers. It refers to that item but changes nothing (of itself). The statement on

the right sets the variable called numbers to a list containing a single item (the number 3).

17. Consider the code shown to the right.

When Location 1 is reached the first time:

• What is the value of miles?

333

• What is the value of self?

The object to which car1 in
the cars function refers.

When Location 1 is reached the second
time:

• What is the value of miles?

200

• What is the value of self?

The object to which car2 in
the cars function refers.

What does the code print when it runs?

10333 700

18. Consider a function named blah that
takes a list of numbers as its sole argument. For each of the following possible specifications for
what blah returns:

Circle Yes if the code for blah would require a loop.

Circle No if the code for blah would NOT require a loop.

If blah returns:

a. The smallest number in the list. Yes No

class Car(object):

 def __init__(self, m):

 self.mileage = m

 def drive(self, miles):

 #### Location 1

 self.mileage = self.mileage + miles

def cars():

 car1 = Car(10000)

 car2 = Car(500)

 car1.drive(333)

 car2.drive(200)

 print(car1.mileage, car2.mileage)

cars()

Page 14 of 14

b. The second smallest number in the list. Yes No

c. The second number in the list. Yes No

d. The first positive number in the list, or -1 if there
is no positive number in the list. Yes No

e. True if the first number in the list is positive, else False. Yes No

f. True if the list contains no positive numbers, else False. Yes No

g. The average of the positive numbers in the list. Yes No

h. The number of numbers in the list. Yes No

i. The number of positive numbers in the list. Yes No

j. The number in the middle of the list. Yes No

	Exam 2 – Practice Problems for the Paper-and-Pencil portion
	SOLUTION (check these against your answers page by page after attempting each page)
	Pay special attention to Problems:
	3 4 5 11 – 14 and 17 – 18
	since they summarize many of the concepts and are in forms that we often use for exams.
	Also be sure to review your Exam 1 paper-and-pencil problems, since you may see similar questions on some of those concepts.
	X = []
	X[0] = 100
	X[1] = 77
	X[2] = 88
	What does the code print when it runs?
	10333 700

