
Page 1 of 17

Exam 3 – Practice Problems for the Paper-and-Pencil portion

Note: These practice problems relate very directly to what you can expect to see
on the Paper-and-Pencil portion of Exam 3. Do these problems carefully and
check your answers via the online Solution to these problems.

Many of these problems are similar to or repeated from the Paper-and-Pencil
practice problems for Exam 2.

Each problem has a time estimate that indicates how long the problem might
take (at most) for a well-prepared student who had no prior experience in
software development before this course. If you are taking much longer than
the time estimates, work with your instructor to learn techniques to solve them
more quickly.

A well-prepared student should be able to complete all these problems in under
about 2 hours.

Be forewarned that the Paper-and-Pencil portion of Exam 3 may not be as
generous regarding partial credit as was Exam 2. If you are not 100% clear on
ALL parts of ALL of these problems, meet with your instructor, a course assistant,
or another equally qualified person to become solid in your understanding of the
concepts that these problems assess:

• Problem 1: Scope of variables, flow of control through function calls and
object construction, arguments and parameters.

• Problems 2, 7 and 27: Mutation via function calls (when the arguments are
mutable), box-and-pointer diagrams, references, mutation versus
reassignment.

• Problem 6: Mutation via assignment of the insides of container objects, box-
and-pointer diagrams, references, aliases, mutation versus reassignment.

• Problems 3 and 5: Object construction, aliases (two names for the same
object).

• Problem 4: Tracing function calls by hand, returning values, order of
operations, return really leaves the function.

• Problems 8, 9 and 10: Tracing loops within loops by hand, with #10 featuring
sequences inside sequences.

• Problem 11: Tracing while loops by hand.

• Problems 12, 25 and 26: Implementing by hand a function that requires loops
within loops (#12), the MAX/MIN pattern (#25), and the FIND pattern (#26).

• Problem 13: Implementing a simple class by hand.

• Problems 14 through 24: References and mutation.

Page 2 of 17

3 5

1. [A well-prepared student should not require more than about 10 minutes to complete
this problem.]

Consider the code on the next page. Arrange so that you can see both this page and the next
page at the same time. (Un-staple as needed.) On the exam, you will receive the code for any
problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. In this problem,
you will trace the execution of the code. As each location is encountered during the run:

1. CIRCLE each variable that is defined at that location.

2. WRITE the VALUE of each variable that you circled directly BELOW the circle.

For example, the run starts in main, as usual. The first of the seven locations to be
encountered is Location 6. At Location 6, the only variables defined are a and z, with values 5
and 3 at that point of the program’s run. So, on the row for Location 6, I have circled a and z
and written their values at Location 6 directly below them.

Note that you fill out the table in the order that the locations are encountered, NOT from top to
bottom. ASK FOR HELP IF YOU DO NOT UNDERSTAND WHAT THIS PROBLEM ASKS YOU TO DO.

Location 1 the 1st
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 1 the 2nd
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 2 the 1st
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 2 the 2nd
time that it is
encountered

a w z self.w cat.w dog.w cat.a

Location 3
a w z self.w cat.w dog.w cat.a

Location 4
a w z self.w cat.w dog.w cat.a

Location 5
a w z self.w cat.w dog.w cat.a

Location 6
a w z self.w cat.w dog.w cat.a

Location 7
a w z self.w cat.w dog.w cat.a

Page 3 of 17

Code for Problem

1:

Arrange so that you can
see this code and the
problem itself at the
same time. (Un-staple as
needed.)

The arrows are there to
help you see where the
seven Locations are in
the code.

class Animal(object):

 def __init__(self, w, a):

 #### Location 1

 a = 10

 self.w = a * w # MULTIPLY, not add

 #### Location 2

 def eat(self, w):

 self.w = self.w + (2 * w)

def make_animals(z, a, w):

 #### Location 3

 dog = Animal(w + a, z)

 #### Location 4

 cat = Animal(w + z, 1)

 dog.eat(5)

 #### Location 5

 return cat

def main():

 a = 5

 z = 3

 #### Location 6

 dog = make_animals(a, z, z + 1)

 #### Location 7

main():

Page 4 of 17

2. [A well-prepared student should not require more than about 15 minutes to complete
this problem.]

Consider the code on the next page. Arrange so that you can see both this page and the next
page at the same time. (Un-staple as needed.) On the exam, you will receive the code for any
problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. Trace the code’s
execution and draw a box-and-pointer diagram on a separate sheet of paper as you trace the
code’s execution.

As you draw the box-and-pointer diagram, write (in the box below) what gets printed when
main runs. Write Point objects as in this example: (100, 150).

Output:

Beta 1:

Beta 2:

Beta 3:

Beta 4:

Main 1:

Main 2:

Main 3:

Main 4:

Main 5:

Reminder:

You must draw (on a
separate page) a

** box-and-pointer **

diagram for this problem.

Page 5 of 17

Code for Problem 2:

Arrange so that you can
see this code and the
problem itself at the same
time. (Un-staple as
needed.)

def main():

 radius = 70

 center = Point(100, 150)

 p = center

 seq = [radius, center.x, p, 10]

 ans = beta(radius, center.x, p, seq)

 print('Main 1:', radius)

 print('Main 2:', center)

 print('Main 3:', p)

 print('Main 4:', seq)

 print('Main 5:', ans)

def beta(radius, x, p, seq):

 radius = 33

 p.x = 678

 seq[0] = 444

 seq[3] = 222

 seq = [100, 200, 300]

 p = Point(600, 700)

 p.y = 99

 print('Beta 1:', radius)

 print('Beta 2:', x)

 print('Beta 3:', p)

 print('Beta 4:', seq)

 return seq[2]

main()

Page 6 of 17

3. [A well-prepared student should not require more than about 1 minute to complete this
problem.]

When the code in the previous problem runs: (circle your choice for each of the following)

a. How many Point objects are constructed in main? 0 1 2 3 4

b. How many Point objects are constructed in beta? 0 1 2 3 4

4. [A well-prepared student should not require more than about 7 minutes to complete this

problem.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without
errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():

 print('Main:', three())

def three():

 print('Three 1:', one(7))

 return two(10) + (100 * one(5))

 print('Three 2:')

def two(y):

 answer = one(2 * y)

 print('Two:', y, answer)

 return (5 + answer)

def one(x):

 print('One:', x)

 return (3 * x)

main()

Output:

Page 7 of 17

5. [A well-prepared student should not require more than about 1 minute to complete this
problem.]

Consider the following four statements:

p1 = rg.Point(4, 5)

p2 = rg.Point(p1.x, p1.y)

p3 = p1

p4 = p2

At this point, how many rg.Point objects have been constructed? 1 2 3 4
 (circle your choice)

6. [A well-prepared student should not require more than about 7 minutes to complete this

problem.]

Consider the code snippet to the right. Trace the execution of the code snippet and draw a
box-and-pointer diagram on a separate sheet of paper as you trace the code’s execution.

After the code snippet is executed, what are the values of the variables? (Write your answer in the
spaces provided below.)

p1.x = _________________

p1.y = _________________

p2.x = _________________

p2.y = _________________

p3.x = _________________

p3.y = _________________

p4.x = _________________

p4.y = _________________

p1 = rg.Point(4, 5)

p2 = rg.Point(p1.x, p1.y)

p3 = p1

p4 = p2

p3.x = 99

p4.y = 600

p4 = rg.Point(42, 42)

Reminder:

You must draw (on a
separate page) a

** box-and-pointer **

diagram for this problem.

Page 8 of 17

7. [A well-prepared student should not require more than about 15 minutes to complete this
problem.]

Recall that our Point class has instance variables x and y for its x and y coordinates.

Consider the code snippets below. They are contrived examples with poor style but will run without
errors. For each code snippet:

1. Trace the code snippet’s execution when main runs and draw a box-and-pointer diagram on a
separate sheet of paper as you trace the code snippet’s execution.

2. Write below what the code snippet prints.

(Each code snippet is an independent problem.)

Prints: _______________________________ Prints: ______________________________

_______________________________ _______________________________

_______________________________ _______________________________

def main():

 p1 = Point(11, 12)

 p2 = Point(77, 88)

 p3 = foo(p1, p2)

 print(p1.x, p1.y)

 print(p2.x, p2.y)

 print(p3.x, p3.y)

def foo(p1, p2):

 p1 = Point(0, 0)

 p1.x = 100

 p2.y = 200

 p3 = Point(p2.x, p1.y)

 return p3

def main():

 a = [1, 2, 3]

 b = [100, 200, 300]

 c = foofoo(a, b)

 print(a)

 print(b)

 print(c)

def foofoo(a, b):

 a = [11, 22, 33]

 a[0] = 777

 b[0] = 888

 x = [a[1], b[1]]

 return x

Reminder: You must draw (on a separate page) TWO ** box-and-pointer diagrams **
for this problem.

Page 9 of 17

8. [A well-prepared student should not require more than about 8 minutes to complete this and
the next problem, combined.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without
errors. What
does it print
when main
runs?

Write your
answer in the
box to the
right.

9. Consider the code snippet below. It is a contrived
example with poor style, but it will run without errors. What
does it print when main runs?

Write your answer in the box to the left.

def main():

 for j in range(5):

 for k in range(j):

 print(j, k)

Output:

def main():

 for j in range(5):

 print('here')

 for k in range(1, j - 1):

 print(j, k)

 print('there')

 for k in range(2, j + 1):

 print(j, k)

Output:

Page 10 of 17

10. [A well-prepared student should not require more than about

8 minutes to complete this problem.]

Consider the code snippet in the box below. It is a contrived
example with poor style, but it will run without errors. What
does it print when main runs?

Write your answer in the box shown to the right of the code.

def main():

 seq = [('one', 'two', 'three', 'four'),

 ('five', 'six', 'seven'),

 ('eight', 'nine', 'ten'),

 ['is this ok?'],

 (),

 ('123456', '1234')]

 for k in range(len(seq)):

 for j in range(len(seq[k])):

 print(j, k)

 if len(seq[k][j]) > 3:

 print(seq[k][j],

 len(seq[k][j]))

Output:

Page 11 of 17

11. [A well-prepared student
should not require more than

about 5 minutes to complete
this problem.]

Consider the code snippet
below. It is a contrived
example with poor style, but it
will run without errors. What
does it print when it runs?

Write your answer in the box
to the right.

 x = 2

 while x < 9:

 print(x)

 x = x + 3

 print('One', x)

 y = 2

 while True:

 print(y)

 if y > 9:

 break

 y = y + 3

 print('Two', y)

Output:

Note: The expression:

while BLAH:

 ...

makes the body of the while expression keep running “while”
BLAH is true. For example:

while x > 20:

 ...

makes the body (that is, indented part) of the while
expression keep running while x is greater than 20. (And
presumably x is decreasing inside the body of the loop, so
eventually x is less than or equal to 20 and the loop then exits.)

Page 12 of 17

12. [A well-prepared student should not require more than about 8 minutes to complete this
problem.]

In the space below, write an implementation for the function whose specification is shown in
the following box. Do NOT use your computer for this (or for any other of these paper-and-
pencil problems).

def shape(r):
 """
 Prints shapes per the following examples:
 When r = 5: When r = 3
 *****5 ***3
 ****54 **32
 ***543 *321
 **5432
 *54321
 Precondition: r is a non-negative integer.
 For purposes of "lining up", assume r is a single digit.

 """

Page 13 of 17

13. [A well-prepared student should not require more than about 8 minutes to complete this
problem.]

Consider the Blah class shown below. Implement the three methods per their specifications.

class Blah(object):

 def __init__(self, a, b):

 """ Sets instance variables names color and size

 to the given arguments. """

 def multiply_me(self):

 """ Sets this Blah object's size to 10 times

 what its value is when this method is called. """

 def make_child(self, another_blah):

 """ Returns a new Blah object whose color is

 the same as this Blah's color and whose size is

 the same as the given argument's size. """

Page 14 of 17

[A well-prepared student should not require more than about 5 minutes to complete all of the
problems on this page.]

14. True or false: Variables are REFERENCES to objects. True False (circle your choice)

15. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. True False (circle your choice)

16. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects. True False (circle your choice)

17. Give one example of an object that is a container object:

18. Give one example of an object that is NOT a container object:

19. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating. True False
 (circle your choice)

20. Consider the following statements:

c1 = rg.Circle(rg.Point(200, 200), 25)

c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

21. Continuing the previous problem, consider an additional statement that follows the preceding
two statements:

c1.radius = 77

True or False: After the above statement executes, the variable c1
refers to the same object to which it referred prior to this statement. True False
 (circle your choice)

22. Continuing the previous problems:

• What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

• What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

Page 15 of 17

[A well-prepared student should not require more than about 3 minutes to complete both of the
following problems.]

23. Mutable objects are good because:

24. Explain briefly why mutable objects are dangerous.

25. [A well-prepared student should not

require more than about 10
minutes to complete both this and
the next problem.]

In the space to the right, write a
complete implementation, including
the header (def) line, for a function
that takes a non-empty sequence of
numbers and returns the smallest
number in the sequence.

Do NOT use your computer for this
(or for any other of these paper-
and-pencil problems)

26. In the space to the right, write a
complete implementation, including
the header (def) line, for a function
that takes a sequence of numbers
and returns the index of the first
number that is less than 99, or -1 if
the sequence contains no numbers
less than 99.

Do NOT use your computer for this
(or for any other of these paper-
and-pencil problems)

Page 16 of 17

A well-prepared student should not require more than about 10 minutes to complete all of the
problem on this page (and continuing to the next page.]

27. In Session 9, you implemented a Point class. Recall that a Point object has instance variables x
and y for its x and y coordinates.

Consider the code in the box below. On the next page, draw the box-and-pointer diagram for
what happens when main runs. Also on the next page, show what the code would print when
main runs.

def main():

 point1 = Point(8, 10)

 point2 = Point(20, 30)

 x = 405

 y = 33

 print('Before:', point1, point2, x, y)

 z = change(point1, point2, x, y)

 print('After:', point1, point2, x, y, z)

def change(point1, point2, x, a):

 print('Within 1:', point1, point2, x, a)

 point2.x = point1.x

 point2 = Point(5, 6)

 point1.y = point2.y

 x = 99

 point1.x = x

 a = 77

 print('Within 2:', point1, point2, x, a)

 return a

Page 17 of 17

Draw your box-and-pointer diagram here:

What prints when main runs?

Assume that Point objects get printed as per this example: Point(8, 10).

Before: ___

Within 1: __

Within 2: __

After: __

