Exam 3 – Practice Problems for the Paper-and-Pencil portion

Note: These practice problems relate very directly to what you can expect to see on the Paper-and-Pencil portion of Exam 3. **Do these problems carefully** and **check your answers via the online Solution to these problems**.

Many of these problems are similar to or repeated from the Paper-and-Pencil practice problems for Exam **2**.

Each problem has a *time estimate* that indicates how long the problem might take (at most) for a well-prepared student who had no prior experience in software development before this course. *If you are taking much longer than the time estimates, work with your instructo*r to learn techniques to solve them more quickly.

A well-prepared student should be able to complete **all these problems** in **under** <mark>about 2 hours.</mark>

Be forewarned that the Paper-and-Pencil portion of Exam 3 may not be as generous regarding partial credit as was Exam 2. *If you are not 100% clear on ALL parts of ALL of these problems, meet with your instructor,* a course assistant, or another equally qualified person to become solid in your understanding of the concepts that these problems assess:

- Problem 1: **Scope** of variables, flow of control through function calls and object construction, arguments and parameters.
- Problems 2, 7 and 27: Mutation via *function calls* (when the arguments are mutable), **box-and-pointer diagrams**, references, mutation versus reassignment.
- Problem 6: Mutation via *assignment* of the insides of container objects, **box**and-pointer diagrams, references, aliases, mutation versus reassignment.
- Problems 3 and 5: **Object construction**, **aliases** (two names for the same object).
- Problem 4: Tracing function calls by hand, returning values, order of operations, *return* really *leaves* the function.
- Problems 8, 9 and 10: **Tracing loops within loops** by hand, with #10 featuring sequences inside sequences.
- Problem 11: Tracing while loops by hand.
- Problems 12, 25 and 26: Implementing by hand a function that requires loops within loops (#12), the MAX/MIN pattern (#25), and the FIND pattern (#26).
- Problem 13: Implementing a simple class by hand.
- Problems 14 through 24: References and mutation.

1. [A well-prepared student should not require more than about **10** minutes to complete this problem.]

Consider the code on the next page. Arrange so that you can see both this page and the next page at the same time. (Un-staple as needed.) On the exam, you will receive the code for any problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. In this problem, you will trace the execution of the code. As each location is encountered during the run:

- 1. **CIRCLE each variable** that is **defined** at that location.
- 2. WRITE the VALUE of each variable that you circled directly BELOW the circle.

For example, the run starts in *main*, as usual. The first of the seven locations **to be encountered** is **Location 6**. At Location 6, the only variables defined are *a* and *z*, with values *5* and *3* at that point of the program's run. So, on the row for Location 6, I have circled *a* and *z* and written their values at Location 6 directly below them.

Note that you fill out the table in the order that the locations are encountered, **NOT from top to bottom. ASK FOR HELP IF YOU DO NOT UNDERSTAND WHAT THIS PROBLEM ASKS YOU TO DO.**

Location 1 the 1 st time that it is	а	W	z	self.w	cat.w	dog.w	cat.a
encountered							
Location 1 the 2 nd time that it is encountered	а	W	z	self.w	cat.w	dog.w	cat.a
Location 2 the 1 st time that it is encountered	a	W	Z	self.w	cat.w	dog.w	cat.a
Location 2 the 2 nd time that it is encountered	а	W	Z	self.w	cat.w	dog.w	cat.a
Location 3	a	W	Z	self.w	cat.w	dog.w	cat.a
Location 4	а	W	Z	self.w	cat.w	dog.w	cat.a
Location 5	a	W	Z	self.w	cat.w	dog.w	cat.a
Location 6	a 5	W	z 3	self.w	cat.w	dog.w	cat.a
Location 7	а	W	Z	self.w	cat.w	dog.w	cat.a

Code for Problem

1:

Arrange so that you can see this code and the problem itself at the same time. (Un-staple as needed.)

The arrows are there to help you see where the seven Locations are in the code.

```
class Animal(object):
    def init (self, w, a):
        #### Location 1
        a = 10
        self.w = a * w # MULTIPLY, not add
        #### Location 2
    def eat(self, w):
        self.w = self.w + (2 * w)
def make_animals(z, a, w):
    #### Location 3
    dog = Animal(w + a, z)
    ##### Location 4
    cat = Animal(w + z, 1)
    dog.eat(5)
    #### Location 5
    return cat
def main():
    a = 5
    z = 3
    #### Location 6
    dog = make_animals(a, z, z + 1)
    #### Location 7
main():
```

2. [A well-prepared student should not require more than about **15 minutes** to complete this problem.]

Consider the code on the next page. Arrange so that you can see both this page and the next page at the same time. (Un-staple as needed.) On the exam, you will receive the code for any problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. Trace the code's execution and **draw a box-and-pointer diagram on a separate sheet of paper** as you trace the code's execution.

As you draw the box-and-pointer diagram, write (in the box below) what gets printed when *main* runs. Write Point objects as in this example: **(100, 150)**.

Output:	
Beta 1:	Reminder: You must draw (on a
Beta 2:	separate page) a ** box-and-pointer **
Beta 3:	diagram for this problem.
Beta 4:	
Main 1:	
Main 2:	
Main 3:	
Main 4:	
Main 5:	

```
Code for Problem 2:
```

Arrange so that you can see this code and the problem itself at the same time. (Un-staple as needed.)

```
def main():
    radius = 70
    center = Point(100, 150)
    p = center
    seq = [radius, center.x, p, 10]
    ans = beta(radius, center.x, p, seq)
    print('Main 1:', radius)
    print('Main 2:', center)
    print('Main 3:', p)
    print('Main 4:', seq)
    print('Main 5:', ans)
def beta(radius, x, p, seq):
    radius = 33
    p.x = 678
    seq[0] = 444
    seq[3] = 222
    seq = [100, 200, 300]
    p = Point(600, 700)
    p.y = 99
    print('Beta 1:', radius)
    print('Beta 2:', x)
    print('Beta 3:', p)
    print('Beta 4:', seq)
    return seq[2]
main()
```

3. [A well-prepared student should not require more than about **1** minute to complete this problem.]

When the code in the previous problem runs: (circle your choice for each of the following)

a.	How many Point objects are constructed in main ?	0	1	2	3	4
b.	How many Point objects are constructed in beta ?	0	1	2	3	4

4. [A well-prepared student should not require more than about **7** minutes to complete this problem.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when it runs?

Write your answer in the box to the right of the code.

```
def main():
    print('Main:', three())
def three():
    print('Three 1:', one(7))
    return two(10) + (100 * \text{ one}(5))
    print('Three 2:')
def two(y):
    answer = one(2 * y)
    print('Two:', y, answer)
    return (5 + answer)
def one(x):
    print('One:', x)
    return (3 * x)
main()
```

Output:

5. [A well-prepared student should not require more than about **1** minute to complete this problem.]

Consider the following four statements:

p1 = rg.Point(4, 5)
p2 = rg.Point(p1.x, p1.y)
p3 = p1
p4 = p2

- At this point, how many *rg.Point* objects have been constructed? 1 2 3 4 (circle your choice)
- 6. [A well-prepared student should not require more than about **7** minutes to complete this problem.]

Consider the code snippet to the right. Trace the execution of the code snippet and **draw a box-and-pointer diagram on a separate sheet of paper** as you trace the code's execution.

After the code snippet is executed, what are the values of the variables? (Write your answer in the spaces provided below.)

7. [A well-prepared student should not require more than about **15 minutes** to complete this problem.]

Recall that our Point class has instance variables \mathbf{x} and \mathbf{y} for its x and y coordinates.

Consider the code snippets below. They are contrived examples with poor style but will run without errors. For each code snippet:

- 1. Trace the code snippet's execution when *main* runs and **draw a box-and-pointer diagram on a separate sheet of paper** as you trace the code snippet's execution.
- 2. Write below what the code snippet prints.

(Each code snippet is an independent problem.)

Reminder: You must *draw* (on a separate page) **TWO** ** **box-and-pointer diagrams** ** for this problem.

8. [A well-prepared student should not require more than about **8** minutes to complete this and the next problem, combined.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without

Output:

```
10. [A well-prepared student should not require more than about8 minutes to complete this problem.]
```

Consider the code snippet in the box below. It is a contrived example with poor style, but it will run without errors. What does it print when *main* runs?

Write your answer in the box shown to the right of the code.

```
def main():
    seq = [('one', 'two', 'three', 'four'),
        ('five', 'six', 'seven'),
        ('eight', 'nine', 'ten'),
        ['is this ok?'],
        (),
        ('123456', '1234')]
    for k in range(len(seq)):
        for j in range(len(seq[k])):
            print(j, k)
            if len(seq[k][j]) > 3:
                print(seq[k][j],
                      len(seq[k][j]))
```

 [A well-prepared student should not require more than about **5 minutes** to complete this problem.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when it runs?

Write your answer in the box to the right.

Note: The expression:

while BLAH:

makes the body of the *while* expression keep running "while" BLAH is true. For example:

while x > 20:

. . .

Output:

makes the body (that is, indented part) of the *while* expression keep running while *x* is greater than 20. (And presumably *x* is decreasing inside the body of the loop, so eventually *x* is less than or equal to **20** and the loop then exits.)

x = 2
while $x < 9$:
<pre>print(x)</pre>
x = x + 3
<pre>print('One', x)</pre>
y = 2
while True:
print(y)
if y > 9:
break
y = y + 3
<pre>print('Two', y)</pre>

12. [A well-prepared student should not require more than about **8 minutes** to complete this problem.]

In the space below, write an implementation for the function whose specification is shown in the following box. Do NOT use your computer for this (or for any other of these paper-and-pencil problems).

```
def shape(r):
    .....
    Prints shapes per the following examples:
    When r = 5:
                                       When r = 3
        ****5
                                       ***3
        ****54
                                       **32
        ***543
                                       *321
        **5432
        *54321
    Precondition: r is a non-negative integer.
    For purposes of "lining up", assume r is a single digit.
    .....
```

13. [A well-prepared student should not require more than about **8 minutes** to complete this problem.]

Consider the Blah class shown below. Implement the three methods per their specifications.

```
class Blah(object):
    def __init__(self, a, b):
        """ Sets instance variables names color and size
                                    .....
            to the given arguments.
    def multiply_me(self):
        """ Sets this Blah object's size to 10 times
                                                          ......
            what its value is when this method is called.
    def make_child(self, another_blah):
        """ Returns a new Blah object whose color is
            the same as this Blah's color and whose size is
            the same as the given argument's size. """
```

(circle your choice)

[A well-prepared student should not require more than about **5 minutes** to complete all of the problems on this page.]

14.True or fals	se: Variables are REFERENCES to objects.	True	False	(circle your c	hoice)
15. True or fals causes a va	se: Assignment (e.g. x = 100) ariable to refer to an object.	True	False	(circle your c	choice)
16.True or fals also cause	se: Function calls (e.g. foo(54, x)) variables to refer to objects.	True	False	(circle your c	hoice)
17. Give one e	example of an object that is a container ob	ject:			
18. Give one e	example of an object that is NOT a contain e	er objec	t:		
19. True or fal to the sam (circle	lse: When an object is mutated, it no longene object to which it referred prior to the referred prior to the r	er refers nutating	5	True Fals	e
20. Consider t	the following statements:				
c1 = c2 = 0	rg.Circle(rg.Point(200, 200), 25 c1)			
At this poin (circle	int, how many rg.Circle objects have be e your choice)	een cons	structed	? 1	2
21. Continuing two stater	g the previous problem, consider an additi ments:	onal sta	tement	that follows	the preceding
c1.ra	dius = 77				
True or Fal refers to tl (circle	Ilse: After the above statement executes, the same object to which it referred prior t your choice)	the vari o this st	able c1 atemen	t. True	e False
22. Continuing	g the previous problems:				
What state	t is the value of c1 's radius after the ement in the previous problem executes?	25	77	(circle your ch	oice)
 What 	t is the value of c2 's radius after the				

statement in the previous problem executes? **25 77**

[A well-prepared student should not require more than about **3 minutes** to complete both of the following problems.]

23. Mutable objects are good because:

24. Explain briefly why mutable objects are dangerous.

25. [A well-prepared student should not require more than about 10 minutes to complete both this and the next problem.]

In the space to the right, write a complete implementation, *including the header (def) line*, for a function that takes a non-empty sequence of numbers and returns the smallest number in the sequence.

Do NOT use your computer for this (or for any other of these paperand-pencil problems)

26. In the space to the right, write a complete implementation, *including the header (def) line*, for a function that takes a sequence of numbers and returns the index of the first number that is less than **99**, or **-1** if the sequence contains no numbers less than **99**.

Do NOT use your computer for this (or for any other of these paperand-pencil problems) A well-prepared student should not require more than about **10** minutes to complete all of the problem on this page (and continuing to the next page.]

27. In Session 9, you implemented a *Point* class. Recall that a *Point* object has instance variables *x* and *y* for its x and y coordinates.

Consider the code in the box below. On the **next** page, draw the **box-and-pointer diagram** for what happens when **main** runs. Also on the next page, show what the code would **print** when **main** runs.

```
def main():
    point1 = Point(8, 10)
    point2 = Point(20, 30)
    x = 405
    y = 33
    print('Before:', point1, point2, x, y)
    z = change(point1, point2, x, y)
    print('After:', point1, point2, x, y, z)
def change(point1, point2, x, a):
    print('Within 1:', point1, point2, x, a)
    point2.x = point1.x
    point2 = Point(5, 6)
    point1.y = point2.y
    x = 99
    point1.x = x
    a = 77
    print('Within 2:', point1, point2, x, a)
    return a
```

Draw your box-and-pointer diagram here:

What prints when *main* runs?

Assume that **Point** objects get printed as per this example: **Point(8, 10)**.

Before:	 	 	
Within 1:	 	 	
Within 2:	 	 	
After:			