
Page 1 of 7

Exam 2 – Paper and Pencil part (Winter, 2018-19)

Name: ______SOLUTION_____ Section: _______

Rules and Expectations

At the beginning of this exam, you will receive the Expectations about Academic Integrity
for this exam -- it is the same as what you were given to read previously. Re-read that
document as needed. Sign it and turn it in when you finish this exam (both parts).

Two parts (this is Part 1, Paper-and-Pencil)

For this part, the ONLY external resource you may use is a single 8½ by 11-inch sheet of
paper, with whatever you want on it, typed or handwritten or a combination of the two. You
may use BOTH sides of the sheet (or you may use TWO sheets of paper but using only ONE side
of each). You must have prepared the sheet before beginning this exam. You may also use a
calculator if you like (but only for calculating).

Problem Points
Possible

Points
Earned Comments

1 10

2 2

3 10

4 10

5 10

6 4

7 4

Total
(of 100 on

the exam)
50

Communication: For both parts of the exam, you must not communicate with anyone except
your instructors and her assistants, if any. In particular:

● You must not talk with anyone else or exchange information with them during this exam.

● After this exam, you must not talk about the exam with anyone who has not yet taken it.

You must NOT use email, chat or the like during this exam. Close all such applications before
you start the exam.

Page 2 of 7

1. (10 points.) Consider a function named blah that takes a list of numbers as its sole
argument. For each of the following possible specifications for what blah returns:

Circle Yes if the code for blah would require a loop.

Circle No if the code for blah would NOT require a loop.

1 pt each

If blah returns:

a. The smallest number in the list. (Yes) No

b. The second smallest number in the list. (Yes) No

c. The second number in the list. Yes (No)

d. The first positive number in the list, or -1 if there
is no positive number in the list. (Yes) No

e. True if the first number in the list is positive, else False. Yes (No)

f. True if the list contains no positive numbers, else False. (Yes) No

g. The average of the positive numbers in the list. (Yes) No

h. The number of numbers in the list. Yes (No)

i. The number of positive numbers in the list. (Yes) No

j. The number in the middle of the list. Yes (No)

2. (2 points) Consider the code shown to
the right. As always for quiz questions or
exams, assume rg.Rectangle uses
Point objects and does not make clones.

How many rg.Point objects have been
constructed?

 1 2 3 (4) 5 6 7 8 more than 8 (circle your
choice)

Page 3 of 7

3. (10 points). Consider the code snippet below.
It is a contrived example with poor style, but
it will run without errors. What does it print
when it runs?

Page 4 of 7

4. Consider the code on the page to the right of this page. It is a contrived example with
poor style but will run without errors. In this problem, you will trace the execution of the
code. As each location is encountered during the run, in the table below:

● CIRCLE each variable that is defined at that location.
WRITE the VALUE of each variable that you circled directly BELOW the circle.

1 pt each perfect row, considered perfect if transforms earlier wrong one correctly.

Location
1

a b d

60

n donut
.radius

donut
.calories

glazed
.radius

glazed
.calories

self
.radius

self
.calories

Location
2

a b d

60

n donut
.radius

donut
.calories

glazed
.radius

glazed
.calories

self
.radius

30

self
.calories

600

Location
3

a b d n

20

donut
.radius

donut
.calories

glazed
.radius

glazed
.calories

self
.radius

30

self
.calories

600

Location
4

a b d n

20

donut
.radius

donut
.calories

glazed
.radius

glazed
.calories

self
.radius

10

self
.calories

600

Location
5

a

4

b

123

d n donut
.radius

donut
.calories

glazed
.radius

glazed
.calories

self
.radius

self
.calories

Location
6

a

10

b d n donut
.radius

30

donut
.calories

600

glazed
.radius

glazed
.calories

self
.radius

self
.calories

Location
7

a

10

b d n donut
.radius

10

donut
.calories

80

glazed
.radius

glazed
.calories

self
.radius

self

.calories

Location
8

a

10

b

40

d n donut
.radius

donut
.calories

glazed
.radius

glazed
.calories

self
.radius

self
.calories

Location
9

a

10

b

40

d n donut
.radius

30

donut
.calories

600

glazed
.radius

30

glazed
.calories

600

self
.radius

self
.calories

Location
10

a

70

b

40

d n donut
.radius

10

donut
.calories

80

glazed
.radius

10

glazed
.calories

80

self
.radius

self
.calories

Page 5 of 7

Showing your work (by marking up the code, drawing a box-and-pointer diagram, or any
other way you wish) is the best way to allow for partial credit.
Feel free to use a separate blank sheet of paper (and attach it to this exam) if you like.

ASK FOR HELP IF YOU DO NOT UNDERSTAND WHAT THIS PROBLEM ASKS YOU TO DO.

5.

class Donut(object):
 def __init__(self, d):
 #### --- Location 1 ---
 self.radius = d / 2
 self.calories = d * 10
 #### --- Location 2 ---

 def bite(self, n):
 #### --- Location 3 ---
 self.radius = self.radius - n
 if self.radius < 0:
 self.calories = 0
 #### --- Location 4 ---

def foo1(a, b):
 b = 123
 #### --- Location 5 ---
 return 10 * a

def foo2(donut, a):
 #### --- Location 6 ---
 donut.bite(a * 2)
 donut.calories = 80
 #### --- Location 7 ---
 return donut.calories - 10

def main():
 a = 10
 b = 20
 b = foo1(4, a)
 #### --- Location 8 ---
 glazed = Donut(60)
 donut = glazed
 #### --- Location 9 ---
 a = foo2(glazed, a)
 #### --- Location 10 ---

main()

Page 6 of 7

5. Consider the code snippet below. It is a contrived example with poor style, but it will run
without errors. What does it print when it runs?

Write your answer in the box to the right of the code.

Show your work by marking up the code to show intermediate values.

def main():

 x = pizza(donuts(12, 80))

 print('Main: ', x)

def donuts(x, y):

 z = pizza(y) + pretzel(x)

 print('Donuts: ', x, y, z)

 return z + y

def pizza(a):

 print('Pizza: ', a)

 return a / 4

 print('Z2: ', 10 * a)

def pretzel(a):

 b = pizza(10 * a)

 print('Pretzel: ', a, b)

 return b

main()

Page 7 of 7

6. (4 points) Assume that there is a class named Elevator whose constructor:

● requires two arguments: the number of floors in the Elevator’s building, and the
current floor at which the Elevator resides.

● and stores those arguments in instance variables named num_floors and
current_floor, respectively.

Assume further that Elevator objects have a go_to_floor method that takes an
positive argument N that is the floor to which the Elevator should move, and moves the
Elevator to floor N unless N is greater than the Elevator’s number of floors (in which case
the Elevator remains at its current floor).

a. Write code that would construct an Elevator object for a building with 12 floors,
with the Elevator starting at floor 5.

elevator = Elevator(12, 5) 2 pts

b. Write code that would use the go_to_floor method to move the Elevator from
part (a) to the floor that is 3 floors higher than its current floor.

elevator.go_to_floor(elevator.current_floor + 3) 2 pts

7. (4 points) Continuing the previous problem, implement the methods in the Elevator
class by filling in the blanks in the following:

class Elevator(object):

 def __init__(self, num_floors, current_floor):
 # Write code here that implements the __init__ method.

 self.num_floors = num_floors

 self.current_floor = current_floor

2 pts

 def go_to_floor(self, N):
 # Write code here that implements the go_to_floor method.

 if N <= self.num_floors:

 self.current_floor = N

2 pts

