
 Page 1

Capstone Team Project: Grading Rubric and
How to Submit Your Project

Winter term, 2019-2020
Professor Alangar’s and Professor Mutchler’s sections

Structure of your Capstone Team Project:
Your Capstone Team Project has two parts:

1. Team Part: You implement this as a team, but with the work
divided up and each person contributing their fair share.

2. Individual Part: You implement this yourself (NOT as a team),
with your code USING (calling) code from the Team Part.

For your individual part, we want each of you to be creative, to have
fun with this project, and to try some things that you haven’t tried
yet! So we aren’t going to tell you exactly what to do. But we do
supply a Rubric (see below) that specifies the qualities that an A-level
project requires.

But there are certain types of things that we’d like each student in
the class to do, so read on.

Doing an exceptional job on one or more of the features in the
Rubric (below) can mitigate a weak feature or two.

See any of the following from previous years for examples (but do
NOT just repeat what they did, of course!)

1. https://youtu.be/3eD4w6C25Xw (path-tracing)

2. https://youtu.be/4Yz6Au0rd-0 (robo-dog)

3. https://youtu.be/TkqSA9_crPI (Indiana jones)

4. https://youtu.be/D5D1My0vnbY (pacman)

5. https://youtu.be/9sVpXiT5di0 (robo tracker)

Continues on the next page:

 Page 2

How to turn in your Capstone Team Project:
Due date: The end of the Final Exam time scheduled for this course.
This term that is 5 p.m. Thursday of exam week. It is OK to turn the
project in early. Prior to the due date:

1. Commit and push your code. But if doing so will break or
overwrite a teammate’s project, do NOT commit-and-push, and
instead get David Mutchler’s help in doing so.

2. Put your code into the Drop Box that is on Moodle, per the
description on that Drop Box, answering the questions in the
short quiz associated with that Drop Box, including the question
where you state the URL of the video that you make and post to
YouTube (see next item).

3. Make a video that demonstrates your application and upload
your video to YouTube, as follows:

a. Make it using someone’s smartphone. Keep it to 10 minutes or
less, preferably 5 minutes or less. Get a teammate or friend to
help you take the video.

b. At the start of the video:

• Video yourself and say your name.

• State your project theme, succinctly and clearly.

• Summarize, succinctly and clearly, what your robot will do
to accomplish your project theme.

c. Then show your Tkinter GUI, letting the video stay on it for about
5 seconds. No explanation of it is needed yet.

• If your GUI later displays new information or pops up new
windows, show the new information or pop-p window(s) for 5
seconds when they appear.

d. Demo what your robot does, explaining as you go and indicating
what sensor(s) it is using, when, for what purpose.

if the robot fails to work as desired in the demo because a
sensor reading is flawed/noisy, that is OK. You should PRINT all
sensor readings in the SSH window. If a flawed/noisy sensor
reading causes the robot to behave wrongly, show the printed
sensor value in your video (pausing there for 5 seconds or so),
explain that such a sensor reading does not (or does!) happen
ordinarily, and move the robot or objects by hand as needed to
continue your demo.

e. At the end of the video, very briefly go through each of the 8
items in the Basic Rubric and the 6 items in the Advanced Rubric
of your Individual Part of the Capstone Team Project. (See below
for these rubrics and their items.)

For each rubric item, indicate what your project did to satisfy
that item, or indicate that it did not satisfy that item. Be
especially thorough with the Intellectual Complexity item.

Then indicate what letter grade you think that you deserve on the
project, per the rubric. If you think that the rubric does not
adequately reflect the quality of your project, explain why.

f. Upload your video to YouTube and mark it as Unlisted (or Public
if you prefer). Important: Make sure that it is NOT private!

 Page 3

Grading Rubric
(What You Should Do in your project):

Your grade on the Capstone Team Project is computed as follows:

1. 40 points, Team Part: Did your team successfully complete and
demonstrate success at the Team Part of your Capstone Project?
In particular, did you get checked off on Labs 1a, 1b, 2a, and 2b?
(These required completing the DriveSystem, Touch, and
ArmAndClaw classes in your libs folder.)

Your score on this part is 40 of 40 if you did so, with the following
exception: If you personally did not contribute your fair share to
the Team Part of your Capstone Project, then you must do Labs 3
and 4 to earn these 40 points.

2. 30 points, Individual Part, Basic: Does your Individual Part of
your Capstone Team Project have the following qualities?

a. Theme: Do you have a well-defined theme? Does your code
do interesting things with the robot per that theme?

b. Graphical User Interface (GUI): Do you have a nice-looking
Tkinter/ttk GUI that runs on your laptop? Does it have
several buttons, entry boxes and labels?

Note: Everything that your robot does must be initiated by a
Tkinter button or the equivalent.

c. MQTT: Do the buttons, entry boxes, etc. on your laptop
send information to the robot and cause actions to occur on
the robot (by using MQTT)?

d. Teleoperation: Can you teleoperate your robot from your
GUI or by using the Beacon as a Remote Control (your
choice)?

Here, teleoperation means that the user can make the robot
start going forward, backward, spinning left (counter-
clockwise) or spinning right (clockwise), as well as make the
robot stop. This can be accomplished by

• pressing buttons on the Beacon, or

• pressing buttons or keys on the GUI, or

• using a joystick, or

• moving your hands in the air,

• or other ways as well.

(Yes, we have a sensor that can distinguish hand motions!)
Your choice; do more than one way to teleoperate if you like!

e. Motion: Does your robot move and use its arm-and-claw in
ways that are meaningful in the context of your theme?

f. Sensors: Does your robot react to its environment in some
interesting, challenging way, using its sensors to do so? Is
the reaction meaningful in the context of your theme?

Doing just teleoperation is NOT enough. You must use:

• the wheel encoders, and

• the touch sensor, and

• at least one more sensor, and

• either yet another sensor or LEDs or sounds.

Important: For all the sensors, if the robot fails to work as
desired because a sensor reading is flawed/noisy, that is

 Page 4

OK. PRINT all sensor readings in the SSH window so that
you can know whether the problem is a flawed/noisy sensor
reading.

g. Team library: Does your code rely on the code in the libs
folder, including the portions that the team wrote in the
Team Part of the project?

h. Code quality: Is your code of reasonable quality? In
particular:

• Are the names of your functions, classes, methods and
variables meaningful and well-chosen?

• Do you have a brief doc-string for every function and
method?

• Did you do Code ~ Reformat Code for the final
version (to meet some of the PEP 8 standards)?

• Does your code use white space appropriately?
(Never more than 2 blank lines between code, and
always at least 1 blank line between function and
method definitions.)

i. Code process: Did you do frequent, regular commit and
pushes, each with a short Commit message that is
meaningful to teammates. Did you avoiding pushing broken
code (that possibly breaks your teammates code)?

3. 30 points, Individual Part, Advanced: Does your Individual Part
of your Capstone Team Project have the following additional
qualities?

a. MQTT: Do you use an MQTT client to send meaningful
information (in the context of your theme) FROM the robot
TO the laptop? Does that information get printed or
(better) displayed on your GUI?

b. Graphical User Interface (GUI): Does your Tkinter/ttk GUI
use some type(s) of widgets beyond labels, entry boxes, and
buttons in ways that are meaningful to your project?

c. Sensors: Does your robot use at least one more sensor than
that required for the Basic part of your Individual Project?
Does your use of sensors include at least one use that is in
the context of challenging code? (See next item.)

d. Complexity: Does your code combine in some new way,
beyond what you did in the labs, that involves some genuine
intellectual complexity?

As examples of intellectual complexity:

• Moving a specified distance does NOT have the required
intellectual complexity, since it can be achieved simply
by calling a method in the library.

• Spinning until the camera sees a desired object, then
moving to the object (stopping via the infrared
proximity sensor) has SOME intellectual complexity. If
you additionally have the robot pick up the object and
take it to some area recognized by the color sensor, that
definitely has adequate intellectual complexity.

• Following a black line via a simple algorithm like the
bang-bang algorithm demonstrated in class has SOME
intellectual complexity. If you use a more sophisticated

 Page 5

line-following algorithm like PID control, that has
adequate intellectual complexity. (See the end of this
document for notes about PID control.)

• Typing notes that play a song is fun but NOT of
adequate intellectual complexity.

Making the computer compose a song by choosing
random notes is getting closer. Making the song have
some qualities that real songs might have (see David
Mutchler for details) would achieve adequate
intellectual complexity.

Or, reading the notes from a file on the internet and
playing them on your robot might have adequate
intellectual complexity, depending on details.

• Drawing, on the GUI, the path that the robot is moving
has adequate intellectual complexity, especially if at
least some of the information for the drawing is via
information sent from the robot to the laptop.

• Having your robot tweet (as in twitter) its motions,
combined with something else, would probably have
adequate intellectual complexity.

Likewise, having your robot communicate with the
Internet (through your laptop) to do something
interesting would probably have adequate intellectual
complexity.

• Using a novel device like the Leap Motion sensor (for
detecting hand motions) would probably have adequate
intellectual complexity.

Be creative!!!!

Do something that you find fun and interesting!

Don’t fail to do something that is INTERESTING to you just
because you are concerned that it might not have adequate
intellectual complexity. Instead, ASK if you are unsure
whether something has adequate intellectual complexity.
Just about ANY creative idea can be made to have adequate
intellectual complexity – talk to David Mutchler!

e. Code quality: In addition to the qualities required for the
Basic part of your intellectual project, does your code use
function decomposition in meaningful ways:

• Methods and functions are no longer than 15 lines of
code?

• Avoids duplicated code by using functions and methods
with parameters (and calling those functions and
methods with different arguments at different places in
the code)?

Doing an exceptional job on one or more of the above features
can mitigate a weak feature or two.

 Page 6

Additional ideas
Additional ideas for things that you might include in your project:

1. Go to an object using the proximity (or, better, the optional
ultrasonic) sensor and pick the object up, doing something
interesting as it does so, as follows:

Assume that there is an object that the robot could pick up that is
straight ahead. Then the robot should go to that object, using the
proximity or optional ultrasonic sensor, and pick it up. While the
robot is going, do something like one or more of these:

• The robot should beep as it moves, beeping increasingly
faster as the robot gets closer to the object.

• The robot should make tones as it moves, with the tones
increasing in frequency as the robot gets closer to the object.

• The robot should turn the cycle through left-LED-on / right-
LED-on / both-LEDs-on / neither-LED-on, with the cycles
occurring increasingly faster as the robot gets closer to the
object.

In each of the above, the user should be able to set the initial and
rate of increase of the actions via the GUI.

2. Use the camera to find an object, then go to it and pick it up as in
the previous idea, as follows:

Train your camera on the color of an object that the robot could
pick up. Then:

a. Make the robot spin until the camera sees the object. The
user should be able to set the direction (clockwise or
counter-clockwise) and speed of the spin via the GUI.

b. Make the robot continue spinning until it is pointing
straight to the object.

c. Calling function(s) from your code for the previous item:
go to the object and pick it up (beeping / tone-making /
LED-ing as in the previous item).

3. Use the color sensor to follow a dark line, as follows:

Make your robot follow the EDGE of a dark line using bang-bang
control as follows:

a. Place your robot so that the color sensor is on the EDGE of
a dark line. Have the code measure the original reflected
light intensity at that position (before the robot starts
moving). Let’s call that reading O in the following.

b. Repeatedly:

o Measure the current reflected light intensity C.

o If C is about the same as O, go straight.

o Else if C is significantly less than O, veer the
appropriate way back toward the line.

o Else veer the other way back toward the line.

Stop when the human presses the Touch Sensor.

Or, even better, make your robot follow the EDGE of a dark line
using the P of PID-control as follows:

 Page 7

a. As in bang-bang, place your robot so that the color sensor
is on the EDGE of a dark line and have the code measure
the original reflected light intensity, which I will call O in
the following.

b. Repeatedly:

o Measure the current reflected light intensity C.

o Let Error = C – O

o Set the left and right wheel speeds to, respectively:

B + (Error * KP1)

B + (Error * KP2)

where one determines effective values for B, KP1
and KP2 by experimenting on an actual line. Note
that KP1 and KP2 will have opposite signs (one
positive, one negative).

Or, still better, add D and I to the PID control, like this:

In addition to doing P-control, also compute, each time
through the loop:

o Let Delta = change in error
from the previous iteration.

o Let Sum = sum of errors
from the previous iterations (perhaps weighting
more recent iterations more highly).

Then:

o Set the left and right wheel speeds to, respectively:

B + (Error * KP1) + (Delta * KD1) + (Sum * KI1)

B + (Error * KP2) + (Delta * KD2) + (Sum * KI2)

where all the constants are determined empirically.

Ideally, the user should be able to set the relevant parameters for
the type of line-following that is implemented.

