
Getting started
ONE and ONLY one person on your team forks the

starting code from the CSSE 120 Home Page. That person adds
her teammates and the instructors as collaborators.

Then the remaining teammates CLONE the project that their
teammate forked and put it into PyCharm as usual.

Sprints and Due Dates
Sprint 1:

From beginning of Session 26 (Wednesday, February 6) to 11:59
p.m. Sunday, February 9. Demonstrate completed features
during class in Session 28, Monday, February 11.

IMPORTANT: Before implementing any features, with your
instructor’s help, master the starting code that you are given.

Implement Features 0 through 7.

Sprint 2:

From 11:59 p.m. Sunday, February 9 to 11:59 p.m. Wednesday,
February 13. Demonstrate completed features during class in
Session 29, Wednesday, February 13 or in Session 30,
Thursday, February 14.

Implement Features 8 through XX.

 Sprint 3:

From 11:59 p.m. Wednesday, February 13 to 6 p.m. Wednesday,
February 20. Demonstrate completed features via video.

Implement your self-selected Feature(s).

Features
For Sprint 1:
Feature 0: Each person puts her own name into her two
mX-…py files and also into the other (shared) files. Coordinate
GIT actions for the shared files, as directed by your instructor!

Feature 1: Implement the 4 unimplemented methods specified
in the ArmAndClaw class in the shared rosebot.py module.
Trio-programming, with each person driving for at least one
method.

Test by implementing short, simple, throw-away test functions
in your mX_run_this_on_robot.py module. Each
person implements tests for at least one of the 4 methods (with
the others NOT testing that method).

Feature 2: Study the shared_gui.py file. Then, with help from
your instructor, implement the beginning skeleton of your
module:

mX_run_this_on_laptop.py

Test that your shared GUI DISPLAYS correctly. It will not yet DO
anything in response to button presses.

(continues on the next page)

Feature 3: Complete the remaining unimplemented methods in
the shared_gui.py module.

● Person 1: The methods in the section labelled:

 Handlers for Buttons in the Teleoperation frame.

● Person 2: The methods in the section labelled:

 Handlers for Buttons in the ArmAndClaw frame.

● Person 3: The methods in the section labelled:

 Handlers for Buttons in the Control frame.

Include BOTH print statements indicating that a message
is being sent AND the send_message calls. Test by
confirming that the print statements work correctly. At this
point, the send_message calls will be sent to nowhere (and
hence do nothing).

Feature 4: Complete the following unimplemented methods
from the portion of the DriveSystem class labelled:

Methods for driving with no external sensor (just
the built-in encoders).

● Person 1:

○ go

○ go_straight_for_seconds

● Person 2:

○ stop

○ go_straight_for_inches_using_time

● Person 3:

○ go_straight_for_inches_using_encoder

Test your portion by implementing short, simple, throw-away
test functions of your portion of the above in your
mX_run_this_on_robot.py module.

Feature 5: With your instructor, implement the shared
shared_gui_delegate_on_robot module.
Trio-programming, with each person driving for at least one
method. Exception: you do not need to do the robot
functionality for the Quit and Exit buttons yet.

Then, with your instructor, add code to your
mX_run_this_on_robot.py module to use the code in the
shared_gui_delegate_on_robot module.

Test by running your GUI on your laptop and your robot mX file
on the robot (via SSH). Confirm that your shared GUI controls
the robot fully, with all buttons implemented for Quit and Exit.

Feature 6: First, with your teammates, write on paper how you
would like to extend your shared GUI to include a DriveSystem
frame that allows the user to tell the robot to:

● Go straight for a given number of seconds at a given
speed (as in the DriveSystem method
go_straight_for_seonds).

● Go straight for a given number of inches at a given speed
using the “time” approach (as in the DriveSystem
method go_straight_for_seconds_using_time).

● Go straight for a given number of inches at a given speed
using the “encoder” approach. (as in the DriveSystem
method go_straight_for_seconds_using_encoder).

Then, trio-program the enclosing frame (but not yet the
widgets within the frame). Test to ensure that the frame
appears (but has nothing except a title-label on it so far).

Finally, implement the three items listed above, with each
person implementing one of the three items. Test that the
extension to the GUI works completely (actually making the
movements on the robot). It is best if you work sequentially in
implementing the three items, not in parallel, to avoid conflicts.

Feature 7: First, with your teammates, write on paper how you
would like to extend your shared GUI to include a SoundSystem
frame that allows the user to tell the robot to:

● Beep for a given number of times.

● Play a tone at a given frequency for a given duration.

● Speak a given phrase.

Then, trio-program the enclosing frame (but not yet the
widgets within the frame). Test to ensure that the frame
appears (but has nothing except a title-label on it so far).

Finally, implement the three items listed above, with each
person implementing one of the three items. Test that the
extension to the GUI works completely (actually making sounds
on the robot).

It is best if you work sequentially in implementing the three
items, not in parallel, to avoid conflicts.

For Sprint 2:
NOTE: For the Sprint 2 features, you will want to watch
relevant parts of the videos at:

http://www.rosebotics.org/csse120-ev3/unit?unit=4

Feature 8: Complete the remaining unimplemented methods
from the DriveSystem class:

● Person 1: The methods in the section labelled:

Methods for driving that use the color sensor.

● Person 2: The methods in the section labelled:

Methods for driving ... infrared proximity sensor.

● Person 3: The methods in the section labelled:

Methods for driving that use the camera. Note
that the display_camera_data() method only
needs to display the blob data on the Console
(not the GUI)

Test your portion by adding buttons and entry boxes for the
above to your DriveSystem frame, in any way you like. Each
person should add the GUI for the methods they implement.

(continues on the next page)

http://www.rosebotics.org/csse120-ev3/unit?unit=4

Feature 9: Go to an object using the proximity sensor and pick
the object up, as follows:

For this feature, implement it via your own mX files, NOT in
shared files. This is an INDIVIDUAL feature, NOT shared.

Assume that there is an object that the robot could pick up that
is straight ahead. Then the robot should go to that object, using
the proximity sensor, and pick it up. While the robot is going:

● Person 1: The robot should beep as it moves, beeping
increasingly faster as the robot gets closer to the object.
The user should be able to set the initial and rate of
increase of the beeping-pace via the GUI.

● Person 2: The robot should make tones as it moves, with
the tones increasing in frequency as the robot gets closer
to the object. The user should be able to set the initial
and rate of increase of the frequencies via the GUI.

● Person 3: The robot should turn the cycle through
left-LED-on / right-LED-on / both-LEDs-on /
neither-LED-on, with the cycles occurring increasingly
faster as the robot gets closer to the object. The user
should be able to set the initial and rate of increase of
the LED-cycle-pace via the GUI.

Test your portion by adding buttons and entry boxes for the
above to your OWN frame for this feature, in any way you like.

Feature 10: Use the camera to find an object, then go to it and
pick it up as in Feature 9, as follows:

For this feature, implement it via your own mX files, NOT in
shared files. This is an INDIVIDUAL feature, NOT shared.

Train your camera on the color of an object that the robot could
pick up. Then make the robot:

1. Spin until the camera sees the object. The user should
be able to set the direction (clockwise or
counter-clockwise) and speed of the spin via the GUI.

2. Make the robot point straight to the robot.

3. Calling function(s) from your code for Feature 9, go to
the object and pick it up (beeping / tone-making /
LED-ing as in your own Feature 9).

Test your portion by adding buttons and entry boxes for the
above to your OWN frame for this feature, in any way you like.

(continues on the next page)

Feature 11 (No longer required in this project - we leave it here
as potential inspiration for someone for sprint 3) : Use the
color sensor to follow a dark line, as follows:

For this feature, implement it via your own mX files, NOT in
shared files. This is an INDIVIDUAL feature, NOT shared.

Make your robot follow the EDGE of a dark line, as follows:

1. Place your robot so that the color sensor is on the EDGE of
a dark line.

2. Have the code measure the original reflected light intensity
Original, using the color sensor.

3. Follow the edge of the dark line, as follows:

○ Person 1: Use bang-bang line-following, as
described below.

○ Person 2: Use the P of PID control line-following, as
described below.

○ Person 3: Use the P and D of PID control
line-following, as described below.

The user should be able to set the relevant parameters for the
type of line-following that is implemented.

Test your portion by adding buttons and entry boxes for the
above to your OWN frame for this feature, in any way you like.
Run on the oval lines on the mats in the room, and also try a
more complicated line also in the room.

Bang-bang control means to repeatedly:

● Measure the current reflected light intensity Current.

● If Current is about the same as Original, go straight.

● Else if Current is significantly less than Original, veer the
appropriate way back toward the line.

● Else veer the other way back toward the line.

The P of PID control means to repeatedly:

● Measure the current reflected light intensity Current.

● Let Error = Current - Original.

● Set the left and right wheel speeds to, respectively:

B + (Error * K1)

B + (Error * K2)

where one determines effective values for B, K1 and K2
by experimenting on an actual line. Note that K1 and K2
will have opposite signs (one positive, one negative).

The P and D of PID control means to repeatedly:

● Measure the current reflected light intensity Current.

● Let Error = Current - Original.

● Let Delta = change in error from the previous iteration.

● Set the left and right wheel speeds to, respectively:

B + (Error * K1) + (KD1 * Delta)

B + (Error * K2) + (KD2 * Delta)

where one determines effective values for B, K1, K2, KD1
and KD2 by experimenting on an actual line.

The person implementing the P and D of PID control should ask
the person implementing the P of PID control for good starting
values for B, K1 and K2, and use those as your starting point.

For Sprint 3:

First and foremost, we want each of you to be creative, to have

fun with this project, and to try some things that you haven’t

tried yet! So we aren’t going to tell you exactly what to do. (But

there are certain types of things that we’d like each student in

the class to do, so read on.)

Each of you will write your own code in your own files (ones

with m1, m2, etc in the name) - this sprint is an individual

effort. However, you’ll probably want to add more stuff to the

shared modules (like rosebot), so you’ll need to coordinate

what goes in there with your teammates.

Passing grade (C grade)

● Remote control: Must be able to remote-control

(teleoperate) the robot from a GUI on the laptop.

● TKinter: Must have a nice-looking TKinter GUI of your

own (NOT just the shared GUI you developed in Sprints 1

and 2) with several buttons, entry boxes, text, etc.

● Sensors: Must use at least two sensors (at least one of

which must be analog) in some way that is different from

that of the mini-applications.

● Motors: The robot must react in some interesting,

challenging way that depends on its environment, per its

sensors (NOT just remote control).

● Team Library: Your code needs to rely on your team’s

shared Robot library in some way.

● Code quality: Your code is reasonable quality: good

choices for names, brief doc-strings for each

function/method, did Code ~ Reformat Code to final

version, does not leave behind spurious warning

messages, etc.

Excellent (A grade) Same as for the C version, with the following

additional qualities:

● MQTT: Must use an mqtt client to send information both

from the robot to the PC and from the PC to the robot.

This info must be integrated into the rest of the program

in an interesting way, not just as an add-on feature, and

the remote-control does NOT satisfy this item (you need

additional info to be sent to the robot).

● TKinter: Must have a nice-looking TKinter GUI of your

own (NOT just the shared GUI you developed in Sprints 1

and 2) with several buttons, entry boxes, text, etc.

Includes some type(s) of widget that you didn’t learn

about in the video to do something interesting.

● Sensors: Must use at least three in interesting,

challenging ways that fit the project theme (not just an

artificial add-on).

● Creativity: Your project should be fun and interesting.

One potential way to check this box is to have a theme

for your project. For example, “My project is a PACMAN

game” or “My robot is a firefighter” or “My robot plays

Candy Land”, then explain how you are using that theme

in your project.

● Complexity: The functions that you add should be

combined in some new way, beyond what you did on

Sprints 1 and 2. (In other words, just running drive_until

and beep in sequence isn’t new, so wouldn’t meet this

requirement.)

● Code quality: In addition to the qualities required for the

C grade, must also use functional decomposition, with

methods and functions no longer than 15 lines and with

at least 7 functions or methods in your individual code.

An A project would either include all of these features or all but

one of these features with one exceptional feature. A B project

does some reasonable amount of the A requirements.

How you turn in your work:
Prior to the beginning of your final exam time:

1. Commit and push your code.

2. Make a video that demonstrates your application, as

follows:

■ Make it using someone’s smartphone. Keep it to

6 minutes or less (and preferably 4 minutes or

less if you can). Get a teammate or friend to help

you.

■ Video yourself at the start and say your name as

an introduction.

■ State your project goals succinctly and clearly.

Make your robot theme clear.

■ Show your Tkinter GUI. It doesn't have to be

long, just make it take up most of the frame for a

few seconds. If you have pages pop up later, then

show them when they pop up.

■ Demo what your robot does, explaining as the

robot does so. Be sure to indicate what sensor(s)

it is using, when, for what purpose.

■ At the end of the video, very briefly go through

the bullets under Passing Grade and Excellent

Grade above, and for each, indicate what your

project did to satisfy that one (or indicate that it

did not satisfy that one).

■ See any of the following from previous years for

examples (but do NOT just repeat what they did,

of course!)

1. https://youtu.be/3eD4w6C25Xw

(path-tracing)

2. https://youtu.be/4Yz6Au0rd-0 (robo-dog)

3. https://youtu.be/TkqSA9_crPI (indiana

jones)

4. https://youtu.be/D5D1My0vnbY (pacman)

5. https://youtu.be/I9r8muCzIrQ (broken)

6. https://youtu.be/9sVpXiT5di0 (robo
tracker)

3. Upload your video to YouTube and mark it as Unlisted

(Public is ok to if you like, just DON'T make it Private).

4. In the Team Spreadsheet, put a link to your video, your

robot theme (like PACMAN, Firefighter, Candy Land, etc)

and any comments you’d like.

https://youtu.be/3eD4w6C25Xw
https://youtu.be/3eD4w6C25Xw
https://youtu.be/4Yz6Au0rd-0
https://youtu.be/TkqSA9_crPI
https://youtu.be/TkqSA9_crPI
https://youtu.be/D5D1My0vnbY
https://youtu.be/I9r8muCzIrQ
https://youtu.be/9sVpXiT5di0
https://youtu.be/lGGltZXqnhU
https://docs.google.com/spreadsheets/d/1IIftUteFkgIfTdKbwtUpt9ySQpAD4odzZ_b1o2sznI4/edit?usp=sharing

