Test 3 - Practice Problems for the Paper-and-Pencil portion

Note: These practice problems relate very directly to what you can expect to see on the Paper-and-Pencil portion of Test 3. Do these problems carefully and check your answers via the online Solution to these problems.

Many of these problems are similar to problems that you saw on the Paper-andPencil portion of Test 2.

Each problem has a time estimate that indicates how long the problem might take (at most) for a well-prepared student who had no prior experience in software development before this course. If you are taking much longer than the time estimates, work with your instructor to learn techniques to solve them more quickly.

A well-prepared student should be able to complete problems 1 through 22 in well under 2 hours.

Be forewarned that the Paper-and-Pencil portion of Test 3 may not be as generous regarding partial credit as was Test 2. If you are not 100% clear on ALL parts of ALL of these problems, meet with your instructor, a course assistant, or another equally qualified person to become solid in your understanding of the concepts that these problems assess:

- Problem 1: Scope of variables, flow of control through function calls and object construction, arguments and parameters.
- Problem 2: Mutation via function calls (when the arguments are mutable), box-and-pointer diagrams, references, mutation versus reassignment.
- Problem 3: Object construction.
- Problem 4: Tracing function calls by hand, returning values, order of operations, return really leaves the function.
- Problem 5: Object construction, aliases (two names for the same object).
- Problem 6: Mutation via assignment of the insides of container objects, box-and-pointer diagrams, references, aliases, mutation versus reassignment.
- Problem 7: Mutation via function calls (when the arguments are mutable), box-and-pointer diagrams, references, mutation versus reassignment.
- Problems 8, 9 and 10: Tracing loops within loops by hand, with \#10 featuring sequences inside sequences.
- Problem 11: Tracing while loops by hand.
- Problem 12: Implementing by hand a function that requires loops within loops.
- Problem 13: Implementing a simple class by hand.
- Problems 14 through 22: References and mutation.

1. [A well-prepared student should not require more than about $\mathbf{1 0}$ minutes to complete this problem.]

Consider the code on the next page. Arrange so that you can see both this page and the next page at the same time. (Un-staple as needed.) On the test, you will receive the code for any problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. In this problem, you will trace the execution of the code. As each location is encountered during the run:

1. CIRCLE each variable that is defined at that location.
2. WRITE the VALUE of each variable that you circled directly BELOW the circle.

For example, the run starts in main, as usual. The first of the seven locations to be encountered is Location 6. At Location 6, the only variables defined are \boldsymbol{a} and \boldsymbol{z}, with values 5 and 3 at that point of the program's run. So, on the row for Location 6, I have circled \boldsymbol{a} and \boldsymbol{z} and written their values at Location 6 directly below them.

Note that you fill out the table in the order that the locations are encountered, NOT from top to bottom. ASK FOR HELP IF YOU DO NOT UNDERSTAND WHAT THIS PROBLEM ASKS YOU TO DO.

Location 1 the $1^{\text {st }}$ time that it is encountered	a	W	z	self.w	cat.w	dog.w	cat.a
Location 1 the $2^{\text {nd }}$ time that it is encountered	a	W	z	self.w	cat.w	dog.w	cat.a
Location 2 the $1^{\text {st }}$ time that it is encountered	a	W	z	self.w	cat.w	dog.w	cat.a
Location 2 the $2^{\text {nd }}$ time that it is encountered	a	W	z	self.w	cat.w	dog.w	cat.a
Location 3	a	W	z	self.w	cat.w	dog.w	cat.a
Location 4	a	W	z	self.w	cat.w	dog.w	cat.a
Location 5	a	W	z	self.w	cat.w	dog.w	cat.a
Location 6		W		self.w	cat.w	dog.w	cat.a
Location 7	a	w	z	self.w	cat.w	dog.w	cat.a

Code for Problem 1:

Arrange so that you can see this code and the problem itself at the same time. (Un-staple as needed.)
The arrows are there to help you see where the seven Locations are in the code.
class Animal(object):
def __init__(self, w, a):
\#\#\#\# Location 1
$a=10$
self.w $=a^{*} w \quad$ \# MULTIPLY, not add \#\#\#\# Location 2
def eat(self, w):

$$
\text { self.w }=\text { self.w }+(2 * w)
$$

def make_animals(z, a, w):
\#\#\#\# Location 3
dog $=$ Animal(w + a, z)
\#\#\#\# Location 4
cat = Animal(w + z, 1)
dog.eat(5)
\#\#\#\# Location 5
return cat
def main():
$a=5$
$z=3$
\#\#\#\# Location 6
dog $=$ make_animals(a, z, z + 1)
\#\#\#\# Location 7

2. [A well-prepared student should not require more than about 15 minutes to complete this problem.]
Consider the code on the next page. Arrange so that you can see both this page and the next page at the same time. (Un-staple as needed.) On the test, you will receive the code for any problem like this one on a separate page.

The code is a contrived example with poor style but will run without errors. Trace the code's execution and draw a box-and-pointer diagram on a separate sheet of paper as you trace the code's execution.

As you draw the box-and-pointer diagram, write (in the box below) what gets printed when main runs. Write Point objects as in this example: (100, 150).

Output:

Beta 1:
Reminder:
You must draw (on a separate page) a
Beta 2:
** box-and-pointer **
diagram for this problem.
Beta 3:

Beta 4:

Main 1:

Main 2:

Main 3:

Main 4:

Main 5:

```
def main():
    radius = 70
    center = Point(100, 150)
    p = center
    seq = [radius, center.x, p, 10]
    ans = beta(radius, center.x, p, seq)
    print('Main 1:', radius)
    print('Main 2:', center)
    print('Main 3:', p)
    print('Main 4:', seq)
    print('Main 5:', ans)
def beta(radius, x, p, seq):
    radius = 33
    p.x = 678
    seq[0] = 444
    seq[3] = 222
    seq = [100, 200, 300]
    p = Point(600, 700)
    p.y = 99
    print('Beta 1:', radius)
    print('Beta 2:', x)
    print('Beta 3:', p)
    print('Beta 4:', seq)
    return seq[2]
def main():
radius \(=70\)
center \(=\) Point(100, 150)
p = center
```

main()

Code for Problem 2:

Arrange so that you can see this code and the problem itself at the same time. (Un-staple as needed.)
3. [A well-prepared student should not require more than about 1 minute to complete this problem.]
When the code in the previous problem runs: (circle your choice for each of the following)
a. How many Point objects are constructed in main?
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
4
b. How many Point objects are constructed in beta?
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
4
4. [A well-prepared student should not require more than about 7 minutes to complete this problem.]
Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when it runs?
Write your answer in the box to the right of the code.

```
def main():
    print('Main:', three())
def three():
    print('Three 1:', one(7))
    return two(10) + (100 * one(5))
    print('Three 2:')
def two(y):
    answer = one(2 * y)
    print('Two:', y, answer)
    return (5 + answer)
def one(x):
    print('One:', x)
    return (3*x)
```

main()
5. [A well-prepared student should not require more than about 1 minute to complete this problem.]
Consider the following four statements:

```
p1 = rg.Point(4, 5)
p2 = rg.Point(p1.x, p1.y)
p3 = p1
p4 = p2
```

At this point, how many rg. Point objects have been constructed? $10 \quad 2 \quad 3 \quad 4$ (circle your choice)
6. [A well-prepared student should not require more than about 7 minutes to complete this problem.]
Consider the code snippet to the right. Trace the execution of the code snippet and draw a box-and-pointer diagram on a separate sheet of paper as you trace the code's execution.

After the code snippet is executed, what are the values of the variables? (Write your answer in the spaces provided below.)

```
p1.x =
```

\qquad

```
p1.y =
```

\qquad

```
p2.x =
```

\qquad

```
p2.y =
```

\qquad

```
p3.x =
```

\qquad

```
p3. \(y=\)
``` \(\qquad\)
```

p4. $x=$

``` \(\qquad\)
```

p4. $y=$

``` \(\qquad\)
7. [A well-prepared student should not require more than about 15 minutes to complete this problem.]
Recall that our Point class has instance variables \(\mathbf{x}\) and \(\mathbf{y}\) for its x and y coordinates.
Consider the code snippets below. They are contrived examples with poor style but will run without errors. For each code snippet:
1. Trace the code snippet's execution when main runs and draw a box-and-pointer diagram on a separate sheet of paper as you trace the code snippet's execution.
2. Write below what the code snippet prints.
(Each code snippet is an independent problem.)

```

def main():

```
a = [1, 2, 3]
b \(=[100,200,300]\)
\(c=f o o f o o(a, b)\)
print(a)
print(b)
print(c)
def foofoo(a, b):
\(a=[11,22,33]\)
\(a[0]=777\)
\(b[0]=888\)
\(x=[a[1], b[1]]\)
return x

Prints: \(\qquad\)
\(\qquad\)
\(\qquad\)

Reminder: You must draw (on a separate page) TWO ** box-and-pointer diagrams ** for this problem.
8. [A well-prepared student should not require more than about 8 minutes to complete this and the next problem, combined.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when main runs?

Write your answer in the box to the
```

def main():

```

Output: right.

\section*{Output:}
9. Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when main runs?

Write your answer in the box to the left.
```

def main():
for j in range(5):
print('here')
for k in range(1, j - 1):
print(j, k)
print('there')
for k in range(2, j + 1):
print(j, k)

```
10. [A well-prepared student should not require more than about 8 minutes to complete this problem.]
Consider the code snippet in the box below. It is a contrived example with poor style, but it will run without errors. What does it print when main runs?
Write your answer in the box shown to the right of the code.
\[
\begin{aligned}
& \text { def main(): } \\
& \text { seq }= {[(\text { 'one', 'two', 'three', 'four'), }} \\
&(\text { 'five', 'six', 'seven'), } \\
&(\text { 'eight', 'nine', 'ten'), } \\
& {[\text { 'is this ok?'], }} \\
&(), \\
&(' 123456 ', \quad 1234 ')]
\end{aligned}
\]
for \(k\) in range(len(seq)):
\[
\text { for } j \text { in range(len(seq[k])): }
\]

\section*{Output:}
\[
\operatorname{print}(j, k)
\]
if len(seq[k][j]) > 3:
print(seq[k][j],
\[
\operatorname{len}(\operatorname{seq}[k][j]))
\]
11. [A well-prepared student should not require more than about 5 minutes to complete this problem.]

Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when it runs?
Write your answer in the box to the right.

Note: The expression:
while BLAH:
makes the body of the while expression keep running "while" BLAH is true. For example:
while x > 20:
makes the body (that is, indented part) of the while expression keep running while \(\boldsymbol{x}\) is greater than 20. (And presumably \(\boldsymbol{x}\) is decreasing inside the body of the loop, so eventually \(\boldsymbol{x}\) is less than or equal to \(\mathbf{2 0}\) and the loop then exits.)

Output:
12. [A well-prepared student should not require more than about 8 minutes to complete this problem.]

In the space below, write an implementation for the function whose specification is shown in the following box. Do NOT use your computer for this (or for any other of these paper-andpencil problems).

\section*{def shape(r):}
"""
Prints shapes per the following examples:
When \(r=5: \quad\) When \(r=3\)
\(* * * * * 5 \quad * * * 3\)
\(* * * * 54 \quad * * 32\)
***543 *321
**5432
*54321
Precondition: \(r\) is a non-negative integer.
For purposes of "Lining up", assume \(r\) is a single digit. """
13. [A well-prepared student should not require more than about 8 minutes to complete this problem.]

Consider the Blah class shown below. Implement the three methods per their specifications.
class Blah(object):
def __init__(self, a, b):
""" Sets instance variables names color and size to the given arguments. """

\section*{def multiply_me(self):}
""" Sets this Blah object's size to 10 times what its value is when this method is called. """
def make_child(self, another_blah):
""" Returns a new Blah object whose color is the same as this Blah's color and whose size is the same as the given argument's size. """
[A well-prepared student should not require more than about 5 minutes to complete all of the problems on this page.]
14. True or false: Variables are REFERENCES to objects. True False (circle your choice)
15. True or false: Assignment (e.g. \(\mathbf{x}=100\))
causes a variable to refer to an object. True False (circle your choice)
16.True or false: Function calls (e.g. foo(54, x)) also cause variables to refer to objects. True False (circle your choice)
17. Give one example of an object that is a container object:
18. Give one example of an object that is NOT a container object:
19. True or false: When an object is mutated, it no longer refers to the same object to which it referred prior to the mutating.

True False
(circle your choice)
20. Consider the following statements:
```

c1 = rg.Circle(rg.Point(200, 200), 25)
c2 = c1

```

At this point, how many rg.Circle objects have been constructed?
12 (circle your choice)
21. Continuing the previous problem, consider an additional statement that follows the preceding two statements:
c1. radius = 77
True or False: After the above statement executes, the variable c1
refers to the same object to which it referred prior to this statement. True False
(circle your choice)
22. Continuing the previous problems:
- What is the value of c1's radius after the statement in the previous problem executes?
\(25 \quad 77\)
(circle your choice)
- What is the value of \(\boldsymbol{c 2}\) 's radius after the statement in the previous problem executes?

2577 (circle your choice)

The remaining problem is OPTIONAL. Do it if you want to reinforce further the concepts of references, box-and-pointer diagrams, and mutation.
23. In Session 9, you implemented a Point class. Recall that a Point object has instance variables \(\boldsymbol{x}\) and \(\boldsymbol{y}\) for its x and y coordinates.
Consider the code in the box below. On the next page, draw the box-and-pointer diagram for what happens when main runs. Also on the next page, show what the code would print when main runs.
\[
\begin{aligned}
& \text { def main(): } \\
& \text { point1 }=\operatorname{Point}(8,10) \\
& \text { point2 }=\operatorname{Point}(20,30) \\
& x=405 \\
& y=33 \\
& \text { print('Before:', point1, point2, } x, y) \\
& z=\text { change(point1, point2, } x, y) \\
& \text { print('After:', point1, point2, } x, y, z) \\
& \text { def change(point1, point2, x, a): }
\end{aligned}
\]

Draw your box-and-pointer diagram here:

What prints when main runs?
Assume that Point objects get printed as per this example: \(\operatorname{Point}(8,10)\).

Before: \(\qquad\)

Within 1: \(\qquad\)

Within 2: \(\qquad\)

After:```

