
Page 1 of 19

Test 2 – Practice Problems for the Paper-and-Pencil portion

SOLUTION

Test 2 will assess material covered in Sessions 1 through 14 (but NOT material from Session 15). It will
draw problems especially from the following concepts, where the numbers in the brackets at the
beginning of the item are problems that let you practice that concept:

• [1, 2, 3, 7, 22] Scope, including scope inside a method.

• [2, 4] Function calls and returns – flow of control. Including calls within
expressions (e.g. print(foo1(…), foo2(…)) or x = foo1(..) + foo2(…).

• [4, 6, 18] Range expressions: All 3 forms.

• [5, 7 – 13, 18] Indexing into a sequence, especially for the 1st and last items in
the sequence. Lists, tuples and strings. Out of bounds errors, including (failed)
attempts to accumulate by statements like x[...] =

• [13 – 17] Concatenating items to a sequence.

• [18 - 21] Write simple functions that loop through a sequence and access (e.g.
sum/count), find, or accumulate.

• [23 – 36] References and related concepts.

• [38, 40] Box and pointer diagrams.

• [17, 26 – 38, 40] Mutation of a list / object by a function.

• [10 – 12, 33, 34] Fact that tuples and strings are immutable. What that means.

• [39] Constructing objects. Using instance variables. Calling methods. Doing all
these inside a class as well as outside of the class.

• [37] What SELF is. How to use it.

The actual test’s paper-and-pencil part will be much shorter than this collection of practice problems.
That said, all of these practice problems are excellent practice for Test 2.

Pay special attention to Problems 2 and 4, since they summarize many of the concepts.

Page 2 of 19

1. Consider the code snippets defined below. They are contrived examples with poor style but will run
without errors. For each, what does it print when main runs? (Each is an independent problem. Pay
close attention to the order in which the statements are executed.)

Prints: main 1 5 3 Prints: main 1 5 3 Prints: main 1 5 3

 foo 1 5 3 foo 1 5 3 foo 1 3 5

 foo 2 66 77 88 99 foo 2 66 77 88 99 foo 2 66 77 88 99

 main 2 5 3 main 2 5 3 main 2 5 3

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(a, b):

 print('foo 1', a, b)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(y, x)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

Page 3 of 19

2. Consider what would happen if the
code below were to run. It is a
contrived example with poor style but
will run without errors.

In the table to the right, indicate the
values of the specified variables at the
specified locations in the code, as those
locations are encountered during the
run. If a variable is undefined at that
location, put an X in its box to indicate
so.

For example, the run starts in main, as
usual. So, the first of the seven
locations to be encountered is
Location 6. At Location 6, the variable
a has value 44, and all other variables
are undefined. Hence, Location 6
would be filled out as we have done in
the table to the left.

Location Variable is Value Variable is Value

When

Location 1
is encountered

the 1st time,
the value of:

a is 10 self.m is X

m is X m1.m is X

self.a is X m2.m is X

When

Location 1
is encountered

the 1st time,
the value of:

a is 22 self.m is X

m is X m1.m is X

self.a is X m2.m is X

When

Location 2
is encountered

the 1st time,
the value of:

a is 10 self.m is 15

m is X m1.m is X

self.a is 3 m2.m is X

When

Location 2
is encountered

the 2nd time,
the value of:

a is 22 self.m is 27

m is X m1.m is X

self.a is 3 m2.m is X

When

Location 3
is encountered,

the value of:

a is 44 self.m is X

m is X m1.m is X

self.a is X m2.m is X

When

Location 4
is encountered,

the value of:

a is 6 self.m is X

m is 31 m1.m is X

self.a is X m2.m is X

When

Location 5
is encountered,

the value of:

a is 6 self.m is X

m is 31 m1.m is 42

self.a is X m2.m is 27

When

Location 6
is encountered,

the value of:

a is 44 self.m is X

m is X m1.m is X

self.a is X m2.m is X

When

Location 7
is encountered,

the value of:

a is 44 self.m is X

m is X m1.m is X

self.a is X m2.m is X

class Mini(object):

 def __init__(self, a):

 #### Location 1

 self.a = 3

 self.m = a + 5

 #### Location 2

def foo(a):

 #### Location 3

 a = 6

 m = 31

 #### Location 4

 m1 = Mini(10)

 m2 = Mini(22)

 m1.m = m1.m + m2.m

 # Location 5

def main():

 a = 44

 #### Location 6

 foo(a)

 #### Location 7

main()

Page 4 of 19

3. Consider the code snippet to the right. Both print statements are wrong.

• Explain why the first print statement (in main) is wrong.

The name z in main is not defined. (The z in foo has
nothing to do with the z in main.)

• Explain why the second print statement (in foo) is wrong.

The name x in foo is not defined. (The x in main has
nothing to do with the x in foo.)

4. Consider the code snippet below. It
is a contrived example with poor
style, but it will run without errors.
What does it print when it runs?

Write your answer in the box to the
right.

def main():

 x = 5

 foo(x)

 print(z)

def foo(a):

 print(x)

 z = 100

 return z

 b = [44]

 a = (50, 30, 60, 77)

 x = 3

 for k in range(len(a)):

 b = b + [a[x - k]]

 print(k, b)

 print('A.', a)

 print('B.', b)

 print('X.', x)

Output:

0 [44, 77]

1 [44, 77, 60]

2 [44, 77, 60, 30]

3 [44, 77, 60, 30, 50]

A. (50, 30, 60, 77)

B. [44, 77, 60, 30, 50]

X. 3

Page 5 of 19

5. Consider the code snippet below. It is a contrived example with poor style, but it will run without
errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():

 a = alpha()

 print()

 b = beta()

 print()

 g = gamma()

 print()

 print("main!", a, b, g)

def alpha():

 print("Alpha!")

 return 7

def beta():

 print("Beta!")

 return 15 + alpha()

def gamma():

 print("Gamma!", alpha(), beta())

 return alpha() + beta() + alpha()

main()

Output:

Alpha!

Beta!

Alpha!

Alpha!

Beta!

Alpha!

Gamma! 7 22

Alpha!

Beta!

Alpha!

Alpha!

main! 7 22 36

Page 6 of 19

6. For each of the following range expressions, write the sequence that it generates. Write empty if
the generated sequence is the empty sequence (i.e., has not items in it). We have done the first two
for you as examples.

• range(6) generates the sequence: 0 1 2 3 4 5

• range(6, 6) generates the sequence: empty (nothing, the empty range)

• range(3, 6) generates the sequence: 3 4 5

• range(12, 6) generates the sequence: empty (nothing, the empty range)

• range(3, 8, 1) generates the sequence: 3 4 5 6 7

• range(3, 8, 2) generates the sequence: 3 5 7

• range(4, 8, 2) generates the sequence: 4 6

• range(5, 14, 3) generates the sequence: 5 8 11

• range(5, 15, 3) generates the sequence: 5 8 11 14

• range(20, 15, -1) generates the sequence: 20 19 18 17 16

• range(20, 15) generates the sequence: empty (nothing, the empty range)

• range(15, 20, -1) generates the sequence: empty (nothing, the empty range)

• range(20, 17, -3) generates the sequence: 20

• range(20, 16, -3) generates the sequence: 20 17

• range(20, 20, -3) generates the sequence: empty (nothing, the empty range)

• range(5, 0, -1) generates the sequence: 5 4 3 2 1

• range(5, -1, -1) generates the sequence: 5 4 3 2 1 0

• range(5, -1, -3) generates the sequence: 5 2

• range(5, -2, -3) generates the sequence: 5 2 -1

• range(8) generates the sequence: 0 1 2 3 4 5 6 7

• range(100, 100) generates the sequence: empty (nothing, the empty range)

Page 7 of 19

7. Consider the list X = [3, 7, 1, 0, 99, 5].

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(X[0]) would print: 3

• print(X[1]) would print: 7

• print(X[5]) would print: 5

• print(X[6]) would print: ERROR

• print(X[-1]) would print: 5

• print(X[-6]) would print: 3

• print(X[-7]) would print: ERROR

• print(X[len(X)]) would print: ERROR

• print(X[len(X) - 1]) would print: 5

8. Consider the tuple T = (4, 10, 3).

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(T[0]) would print: 4

• print(T[2]) would print: 3

• print(T[len(T)]) would print: ERROR

• print(T[len(T) - 1]) would print: 3

9. Consider the string s = 'hello'.

For each of the following print statements, indicate what would be printed. Write ERROR if the
print statement would generate an exception (error).

• print(s[0]) would print: h

• print(s[4]) would print: o

• print(s[len(s)]) would print: ERROR

Page 8 of 19

10. Consider the list X = [3, 7, 1, 0, 99, 5] and the statement:

X[3] = 100

Would the above statement would generate an exception (error)? Yes or No (circle your answer)

11. Consider the tuple T = (3, 7, 1, 0, 99, 5) and the statement:

T[3] = 100

Would the above statement would generate an exception (error)? Yes or No (circle your answer)

12. Consider the string s = 'hello' and the statement:

s[3] = 'y'

Would the above statement would generate an exception (error)? Yes or No (circle your answer)

13. Consider the list X = [] and the statement (in this order)s:

X[0] = 100

X[1] = 77

X[2] = 88

Would the above statements would generate an exception (error)? Yes or No (circle your answer)

14. Consider a tuple T. Write a statement that would make T refer to a new tuple with the same items
as it currently has, but also with 74 appended to the end of T.

T = T + (74,)

15. Consider a string s. Write a statement that would make s refer to a new string with the same
characters as it currently has, but also with 'r' appended to the end of s.

s = s + 'r'

16. Consider a list X. Write a statement that would make X refer to a new list with the same items as it
currently has, but also with 'r' appended to the end of X.

X = X + ['r']

17. Consider a list X. Write a statement that would make X refer to the same list, but with that list
having had 'r' appended to the end of X.

X.appand('r')

Page 9 of 19

18. Consider a sequence named X. Write statements that would:

• Print the first (beginning) item of the sequence:

print(X[0])

• Print the last item of the sequence:

print(X[len(X) - 1])

• Print all the items of the sequence, one by one, from beginning to end:

for k in range(len(X)):

 print(x[k])

 Alternative:

for item in X:

 print(item)

• Print all the items of the sequence, one by one, from end to beginning:

for k in range(len(X) – 1, -1, -1):

 print(x[k])

There are other alternatives as well, e.g.:

for k in range(len(X)):

 print(X[len(X) – k – 1])

• Print all the items at odd indices of the sequence, one by one, beginning to end:

for k in range(1, len(X), 2):

 print(x[k])

There are other alternatives as well, but this one is inferior because it takes roughly twice as long
to run as the above solution:

for k in range(len(X)):

 if k % 2 == 1:

 print(X[k])

Page 10 of 19

19. Write a function (including its def line) named count_small that takes a sequence of numbers
and a number Z, and returns the number of items in the sequence that are less than Z. For example:

count_small([8, 2, 7, 10, 20, 1], 7) returns 2 (since 2 and 1 are less than 7)

count_small([8, 2, 7, 10, 20, 1], -4) returns 0

def count_small(sequence, z):

 count = 0

 for k in range(len(sequence)):

 if sequence[k] < z:

 count = count + 1

 return count

20. Write a function (including its def line) named get_all_at_even_indices that takes a
sequence and returns a list of the items in the sequence at even-numbered indices. For example:

get_all_at_even_indices([8, 2, 7, 10, 20]) returns [8, 7, 20]

get_all_at_even_indices('abcdefgh') returns ['a', 'c', 'e', 'g']

def get_all_at_even_indices(sequence):

 items = []

 for k in range(0, len(sequence), 2):

 items = items + [sequence[k]]

 return items

The statement in the above:

items = items + [sequence[k]]

is better written as:

items.append(sequence[k])

Page 11 of 19

21. Write a function (including its def line) named get_first_even_x that takes a sequence of
rg.Circle objects and returns the radius of the first rg.Circle in the sequence whose
center’s x-coordinate is even, or -999 if there are no such circles in the sequence. For example:

get_first_even_x ([rg.Circle(rg.Point(115, 20), 50),

 rg.Circle(rg.Point(8, 1), 33),

 rg.Circle(rg.Point(12, 2), 22)]) returns 33

get_first_even_x ([rg.Circle(rg.Point(115, 20), 50),

 rg.Circle(rg.Point(37, 22), 33),

 rg.Circle(rg.Point(11, 2), 22)]) returns -999

def get_first_even_x(circles):

 for k in range(len(circles)):

 circle = circles[k]

 if circle.center.x % 2 == 0:

 return circle.radius

 return -999

Note that the return -999 is AFTER the loop, not inside the loop!

22. Consider the following two candidate function definitions:

• Which is “better”? Circle the better function.

• Briefly explain why you circled the one you did.

The second form allows the caller of the function to print ANYTHING, while the first
is useful only for printing 'hello'.

def foo():

 print('hello')

def foo(x):

 print(x)

Page 12 of 19

23.True or false: Variables are REFERENCES to objects. True False (circle your choice)

24. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. True False (circle your choice)

25. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects. True False (circle your choice)

26. Give one example of an object that is a container object:

Here are several examples: a list, a tuple, an rg.Circle, a Point, an rg.RoseWindow

27. Give one example of an object that is NOT a container object:

Here are several examples: an integer, a float, None, True, False.

28. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating. True False
 (circle your choice)

29. Consider the following statements:

c1 = rg.Circle(rg.Point(200, 200), 25)

c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

30. Continuing the previous problem, consider an additional statement that follows the preceding two
statements:

c1.radius = 77

After the above statement executes, the variable c1 refers
to the same object to which it referred prior to this statement. True False
 (circle your choice)

31. Continuing the previous problems:

• What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

• What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

Page 13 of 19

33. Which of the following two statements mutates an object? (Circle your choice.)

numbers1 = numbers2

numbers1[0] = numbers2[0]

34. Mutable objects are good because:

They allow for efficient use of space and hence time – passing a mutable object to a
function allows the function to change the “insides” of the object without having to take
the space and time to make a copy of the object. As such, it is an efficient way to send
information back to the caller.

35. Explain briefly why mutable objects are dangerous.

When the caller sends an object to a function, the caller may not expect the function to
modify the object in any way. If the function does an unexpected mutation, that may
cause the caller to fail. If the object is immutable, no such danger exists – the caller can
be certain that the object is unchanged when the function returns control to the caller.

36. What is the difference between the following two expressions?

numbers[3] numbers = [3]

The expression on the left refers to the index 3 item in the sequence called numbers. It

refers to that item but changes nothing (of itself). The statement on the right sets the

variable called numbers to a list containing a single item (the number 3).

Page 14 of 19

37. Consider the code shown to the right.

When Location 1 is reached the first time:

• What is the value of miles?

333

• What is the value of self?

The object to which car1
refers.

When Location 1 is reached the second
time:

• What is the value of miles?

200

• What is the value of self?

The object to which car2
refers.

What does the code print when it runs?

 10333 700

class Car(object):

 def __init__(self, m):

 self.mileage = m

 def drive(self, miles):

 #### Location 1

 self.mileage = self.mileage + miles

def cars():

 car1 = Car(10000)

 car2 = Car(500)

 car1.drive(333)

 car2.drive(200)

 print(car1.mileage, car2.mileage)

cars()

Page 15 of 19

38. In Session 9, you implemented a Point class.
Recall that a Point object has instance variables x and y for its x and y coordinates

Consider the code snippets below. They are contrived examples with poor style but will run without
errors. For each, what does it print when main runs?

(Each is an
independent
problem.)

Prints: 11 12 Prints: [1, 2, 3]

 77 200 [888, 200, 300]

 77 0 [22, 200]

def main():

 p1 = Point(11, 12)

 p2 = Point(77, 88)

 p3 = foo(p1, p2)

 print(p1.x, p1.y)

 print(p2.x, p2.y)

 print(p3.x, p3.y)

def foo(p1, p2):

 p1 = Point(0, 0)

 p1.x = 100

 p2.y = 200

 p3 = Point(p2.x, p1.y)

 return p3

def main():

 a = [1, 2, 3]

 b = [100, 200, 300]

 c = foofoo(a, b)

 print(a)

 print(b)

 print(c)

def foofoo(a, b):

 a = [11, 22, 33]

 a[0] = 777

 b[0] = 888

 x = [a[1], b[1]]

 return x

Page 16 of 19

39. In Session 9, you implemented a Point class.
Recall that a Point object has instance variables x and y for its x and y coordinates.

Here, you will implement a portion of a class called TwoPoints, described as follows:

• The TwoPoints constructor takes 2 arguments, each a Point object, and stores them.

• The TwoPoints class has a method called clone(). It returns a new TwoPoints object whose
two Point objects are clones of the Point objects that the TwoPoints object has.

• The TwoPoints class has a method called swap(). It swaps the two points that the TwoPoints
object has.

• The TwoPoints class has a method called number_of_swaps() that returns the number of
times the TwoPoints object has called its swap() method.

In this column, write code that would TEST
the TwoPoints class.

p1 = Point(10, 20)

p2 = Point(88, 44)

tp = TwoPoints(p1, p2)

Testing construction (__init__):

print('Expected:', p1, p2)

print('Actual: ', tp.p1, tp.p2)

Testing clone:

tp2 = tp.clone() # rest of this test left to you

Testing swap:

tp.swap()

print('Expected:', p2, p1)

print('Actual: ', tp.p1, tp.p2)

tp.swap()

print('Expected:', p1, p2)

print('Actual: ', tp.p1, tp.p2)

Testing number_of_swaps:

print('Expected:', 2)

print('Actual: ',

 tp.number_of_swaps())

In this column, write the IMPLEMENTATION of
the TwoPoints class.

class TwoPoints(object):

 def __init__(self, p1, p2):

 self.p1 = Point(p1.x, p1.y)

 self.p2 = Point(p2.x, p2.y)

 self.nswaps = 0

 def clone(self):

 p1 = Point(self.p1.x,

 self.p1.y)

 p2 = Point(self.p2.x,

 self.p2.y)

 return TwoPoints(p1, p2)

 def swap(self):

 temp = self.p1

 self.p1 = self.p2

 self.p2 = temp

 self.nswaps = self.nswaps + 1

 def number_of_swaps(self):

 return self.nswaps

Page 17 of 19

40. In Session 9, you implemented a Point class. Recall that a Point object has instance variables x and y for
its x and y coordinates.

Consider the code in the box below. On the next page, draw the box-and-pointer diagram for what
happens when main runs. Also on the next page, show what the code would print when main runs.

def main():

 point1 = Point(8, 10)

 point2 = Point(20, 30)

 x = 405

 y = 33

 print('Before:', point1, point2, x, y)

 z = change(point1, point2, x, y)

 print('After:', point1, point2, x, y, z)

def change(point1, point2, x, a):

 print('Within 1:', point1, point2, x, a)

 point2.x = point1.x

 point2 = Point(5, 6)

 point1.y = point2.y

 x = 99

 point1.x = x

 a = 77

 print('Within 2:', point1, point2, x, a)

 return a

Page 18 of 19

Page 19 of 19

From the picture on the previous page, we see that:

What prints when main runs?

Assume that Point objects get printed as per this example: Point(8, 10).

Before: Point(8, 10) Point(20, 30) 405 33

Within 1: Point(8, 10) Point(20, 30) 405 33

Within 2: Point(99, 6) Point(5, 6) 99 77

After: Point(99, 6) Point(8, 30) 405 33 77

