
DEFINING CLASSES IN PYTHON

Catapult—Rose Hulman Institute of Technology

We’ve actually been using Objects
WIDTH = 400
HEIGHT = 50
REPEAT_COUNT = 20
PAUSE_LENGTH = 0.25
win = GraphWin(‘Giants Win!', WIDTH, HEIGHT)
p = Point(WIDTH/2, HEIGHT/2)
t = Text(p, ‘NY Giants—2008 Super Bowl Champs!')
t.setStyle('bold')
t.draw(win)
nextColorIsRed = True
t.setFill('blue')
for i in range(REPEAT_COUNT):
 sleep(PAUSE_LENGTH)
 if nextColorIsRed:
 t.setFill('red')
 else:
 t.setFill('blue')
 nextColorIsRed = not nextColorIsRed
win.close()

Consider this graphics program…

It uses Objects!

Object Terminology

¨  Objects are “active data types”
¤ They know stuff — instance variables
¤ They can do stuff — methods

¨  Objects are instances of some class
¨  Objects created by calling constructors

Key Concept!

¨  A class is like an "object factory"
¤ Calling the constructor tells the classes to make a new

object
¤ Parameters to constructor are like "factory options",

used to set instance variables

¨  Or think of class like a "rubber stamp"
¤ Calling the constructor stamps out a new object shaped

like the class
¤ Parameters to constructor "fill in the blanks". That is,

they are used to set instance variables.

Example

¨  Consider:
p = Point(200, 100)
t = Text(p, 'Go Giants!')

Point
x _______
y _______
fill _______

outline _______
getX() …
getY() …

…

200
100

'black'
'black'

Text
anchor _______

text _______
getAnchor() …

getText() …
setText(text)

setStyle(style)
…

p

'Go Giants'

Point
x _______
y _______
fill _______

outline _______
getX() …
getY() …

…

200
100

'black'
'black'

t

This is a clone of p

Creating Custom Objects:
Defining Your Own Classes

¨  Custom objects:
¤ Hide complexity
¤ Provide another way to break problems into pieces
¤ Make it easier to pass information around

class Card:
 """This class represents a card from a standard deck."""

Code to Define a Class
Declares a class
named Card

docstring
describes class,
used by help()
function

class Card:
 """This class represents a card from a standard deck."""
 def __init__(self, card, suit):
 self.cardName = card
 self.suitName = suit

Code to Define a Class
Special name, __init__
declares a constructor

Special self parameter
is the first formal
parameter of each
method in a class.
self always refers to
the current object

Card

def __init__(self,card,suit):
 self.cardName = card
 self.suitName = suit

Create instance variables just
by assigning to them

A sample constructor call:
c = Card('Ace', 'Hearts')

'Ace'

'Hearts'

cardName ______
suitName ______

c

class Card:
 """This class represents a card from a standard deck."""
 def __init__(self, card, suit):
 self.cardName = card
 self.suitName = suit

 def getValue(self):
 """Returns the value of this card in BlackJack.
 Aces always count as one, so hands need to adjust
 to count aces as 11."""
 pos = cardNames.index(self.cardName)
 if pos < 10:
 return pos + 1
 return 10

Code to Define a Class

self parameter again, no
other formal parameters

use self.<varName> to
read instance variable

A sample method call:
c.getValue()

Card…

docstring for method

class Card:
 """This class represents a card from a standard deck."""
 def __init__(self, card, suit):
 self.cardName = card
 self.suitName = suit

 def getValue(self):
 """Returns the value of this card in BlackJack.
 Aces always count as one, so hands need to adjust
 to count aces as 11."""
 pos = cardNames.index(self.cardName)
 if pos < 10:
 return pos + 1
 return 10

 def __str__(self):
 return self.cardName + " of " + self.suitName

Code to Define a Class

Special __str__ method returns
a string representation of an object

Sample uses of __str__ method:
print (c)
msg = "Card is " + str(c)

class Card:
 """This class represents a card from a standard deck."""
 def __init__(self, card, suit):
 self.cardName = card
 self.suitName = suit

 def getValue(self):
 """Returns the value of this card in BlackJack.
 Aces always count as one, so hands need to adjust
 to count aces as 11."""
 pos = cardNames.index(self.cardName)
 if pos < 10:
 return pos + 1
 return 10

 def __str__(self):
 return self.cardName + " of " + self.suitName

Stepping Through Some Code
Sample use:
card = Card('7','Clubs')
print (card.getValue())
print (card)

Key Ideas

¨  Constructor:
¤ Defined with special name __init__
¤ Called like ClassName()

¨  Instance variables (a.k.a fields):
¤ Created when we assign to them
¤ Live as long as the object lives

¨  self formal parameter:
¤  Implicitly get the value before the dot in the call
¤ Allows method of an object to "talk about itself"

Let's look at an example!

¨  An employee class and some uses of it
¤ http://www.tutorialspoint.com/python/

python_classes_objects.htm

