MZ@ !L!This program cannot be run in DOS mode. $+઄JJJ2J<$J<%J<JJJ$JJJRichJPEd(R"  \H`@pGP@P.text2 `.rdata@@.data02@.pdata@ @@.relocP @B@SH HHt/t%HKHH;tu H [3H [@SH0HHu%H HH H0[H)t$ H f(u HCHP0HtS(t$ H0[f((t$ H0[Hl$Ht$WH HAHH IHH;H mH;HCtbH>H;uTH\$03Ht*HHFHu(HHcH;rظH\$0Hl$8Ht$@H _3H HH 3Hl$8Ht$@H _HUNHPHl$8Ht$@H _Hl$VH HcHփtEt$H NHH n3Hl$@H ^HJH9Au-Hl$@H ^HH9AuHl$@H ^tHH;uH\$0H|$83~PHcHHHteHtIHKHH;t9u/H u HCHP0;|H\$0H|$8Hl$@H ^H u HCHP03fWMcE3I|pIALLBHL+HLCLCI HAYHAY@Xf(CLXCDAYHAY@XXuM;}!H+JM+ HIYHXuf(Ht$WH I]HHu%H ^HoH ~Ht$8H _HH\$0*HHu HWHR0Hu3H\$0Ht$8H _H8H u HCHP0H\$0Ht$8H _H\$Hl$Ht$WH0HHIIHHuC.LLHHD$ kH Hu HSHR0H\$@Hl$HHt$PH0_@SAUAVAWHHMMH LHuAEHHA_A^A][HHt$xHE3LIHD$0)HcyHt$xHHA_A^A][HHl$pH$H;3Ld$@E3HHHMHkL+fDHMvHHuX.LL$0LHID$ UHHu HWHR0HcHxnML/LHIxPtIH}H3IHHHt M;v3H$Hl$pLd$@Ht$xHHA_A^A][ÃظыH\$WH Hc׃t1t$H H"H 3H\$0H _H H >HHtZxHư>HHC HH;v3 H HCHu H u HCHP0H\$0H _H%HH\$0H _@SH HHIL[HH [I@H\$Hl$Ht$H|$ ATAUAVHPHA3LH "AH;tH H;tL MLMcuImMuH Z3AII̅tHT$ Mu53lt!IL$HdH;tau@@t IEI$ttAHHj=HQHI HIMVL\$ Ld$(LAIIL+L+IL+L+IHUJHGADALI H IXBXJADHGLXBALHGILDXJHGI LuI;.HD$ H+HD H(XHGDI;|H(IMVL\$ Ld$(LAIIL+L+IL+L+IHUJBHGJ B\DJHGB\L"LHGB\H B)JHGB\ "H H IB uI;BHD$ H+HD H(\HGDI;|H<IMVL\$ Ld$(LAIIL+L+IL+L+IHUJfHGBDBL"J \B\JBHGL\B "HGH B)\JHGH H IB uI;TLD$ HTL+HH+AHOH\BHHDuHBfWI|sINHT$ LD$(HH+L+HHEHLBDH HYHY@Xf(LXBDYHY@XXuI;}%HD$ H+HDHL YLXI;|f(HI8f(IMVLAIIIL+L+IJHUfHGJ f(f(YBYJHGf(LHGYf(H BHGYJH H IB uI;HGf(HYDDI;|HIcf.z/u-HH H 8Hu HGHP03r^IMVLAIIIL+L+IJHUffffHGI f(f(H IYBYJHGf(LHGYBf(I DHGYJI LuI;HGf(HYDDI;|HIBf.zu H)t$@5^E~-fffff(YDHGHDI;|(t$@H%HtHu HGHP0H:HH0L\$PI[ Ik(Is0I{8IA^A]A\ÐW,MH\$Hl$Ht$H|$ ATAUAVHPHA3LH H;tH oH;tLs!MLMcuImMuH HAII̅tHT$ Mru6H(t!IL$H H;tu@@t IEI$ttAHHh=?H HI'p'HIMVL\$ Ld$(LAIIL+L+IL+L+IHUJffHGADALI H IXBXJADHGLXBALHGILDXJHGI LuI;PHD$ H+HD H(XHGDI;|HJIMVL\$ Ld$(LAIIL+L+IL+L+IHUJBHGJ B\DJHGB\L"LHGB\H B)JHGB\ "H H IB uI;dHD$ H+HD H(\HGDI;|H^IMVL\$ Ld$(LAIIL+L+IL+L+IHUJ@HGBDBL"J \B\JBHGL\B "HGH B)\JHGH H IB uI;tLD$ HTL+HH+AHOH\BHHDuHbfWI|sINHT$ LD$(HH+L+HHEHLBDH HYHY@Xf(LXBDYHY@XXuI;}%HD$ H+HDHL YLXI;|f(aHIf(IMVLAIIIL+L+IJHUfHGJ f(f(YBYJHGf(LHGYf(H BHGYJH H IB uI;HGf(HYDDI;|HIf.z0u.H pHH Hu HGHP0HQ^IMVLAIIIL+L+IJHUfffHGI f(f(H IYBYJHGf(LHGYBf(I DHGYJI LuI;HGf(HYDDI;|HIf.rz-u+H OHH ǻHu HWHR0Hs)t$@5.^E~.ffffff(YDHOHDI;|(t$@H%HtHu HGHP0HʺHHL\$PI[ Ik(Is0I{8IA^A]A\Ð !"#"$|%&+'H\$Hl$Ht$H|$ ATAUAVHPHA3LH rH;tH H;tLs1MLMcuImMuH EHAI*I̅tHT$ Mu6Ht!IL$HH;tu@@t IEI$ttAQHHh=?HHI0/HIMVL\$ Ld$(LAIIL+L+IL+L+IHUJffHGADALI H IXBXJADHGLXBALHGILDXJHGI LuI;PHD$ H+HD H(XHGDI;|HJIMVL\$ Ld$(LAIIL+L+IL+L+IHUJBHGJ B\DJHGB\L"LHGB\H B)JHGB\ "H H IB uI;dHD$ H+HD H(\HGDI;|H^IMVL\$ Ld$(LAIIL+L+IL+L+IHUJ@HGBDBL"J \B\JBHGL\B "HGH B)\JHGH H IB uI;tLD$ HTL+HH+AHOH\BHHDuHbfWI|sINHT$ LD$(HH+L+HHEHLBDH HYHY@Xf(LXBDYHY@XXuI;}%HD$ H+HDHL YLXI;|f(HIxf(IMVLAIIIL+L+IJHUfHGJ f(f(YBYJHGf(LHGYf(H BHGYJH H IB uI;HGf(HYDDI;|HIf.#z0u.H HQH xHu HGHP0H^IMVLAIIIL+L+IJHUfffHGI f(f(H IYBYJHGf(LHGYBf(I DHGYJI LuI;HGf(HYDDI;|HIf.z-u+H ߲HPH WHu HWHR0Hs)t$@5^E~.ffffff(YD蟚HOHDI;|(t$@H%HtHu HGHP0HZHHPL\$PI[ Ik(Is0I{8IA^A]A\Ð|)v*^,b+-- //H\$Hl$Ht$H|$ ATAUAVHPHA3LH H;tH H;tLs#MLMcuImMuH 8հHAII̅tHT$ Mu6HHt!IL$H@H;t=u@@t IEI$ttAHHh=?H-HIp8P8HIMVL\$ Ld$(LAIIL+L+IL+L+IHUJffHGADALI H IXBXJADHGLXBALHGILDXJHGI LuI;PHD$ H+HD H(XHGDI;|HJIMVL\$ Ld$(LAIIL+L+IL+L+IHUJBHGJ B\DJHGB\L"LHGB\H B)JHGB\ "H H IB uI;dHD$ H+HD H(\HGDI;|H^IMVL\$ Ld$(LAIIL+L+IL+L+IHUJ@HGBDBL"J \B\JBHGL\B "HGH B)\JHGH H IB uI;tLD$ HTL+HH+AHOH\BHHDuHbfWI|sINHT$ LD$(HH+L+HHEHLBDH HYHY@Xf(LXBDYHY@XXuI;}%HD$ H+HDHL YLXI;|f(HIf(IMVLAIIIL+L+IJHUfHGJ f(f(YBYJHGf(LHGYf(H BHGYJH H IB uI;HGf(HYDDI;|HI3f.z0u.H HH Hu HGHP0Hq^IMVLAIIIL+L+IJHUfffHGI f(f(H IYBYJHGf(LHGYBf(I DHGYJI LuI;HGf(HYDDI;|HIf.z-u+H oHH Hu HWHR0Hs)t$@5N^E~.ffffff(YD/HOHDI;|(t$@H%HtHu HGHP0HHHL\$PI[ Ik(Is0I{8IA^A]A\Ð12435\6}7 8H\$Hl$Ht$H|$ ATAUAVHPHA3LH H;tH H;tLs3MLMcuImMuH eHAIJI̅tHT$ M"u6Hبt!IL$HШH;tͨu@@t IEI$ttAqHHh=?HHI@@HIMVL\$ Ld$(LAIIL+L+IL+L+IHUJffHGADALI H IXBXJADHGLXBALHGILDXJHGI LuI;PHD$ H+HD H(XHGDI;|HJIMVL\$ Ld$(LAIIL+L+IL+L+IHUJBHGJ B\DJHGB\L"LHGB\H B)JHGB\ "H H IB uI;dHD$ H+HD H(\HGDI;|H^IMVL\$ Ld$(LAIIL+L+IL+L+IHUJ@HGBDBL"J \B\JBHGL\B "HGH B)\JHGH H IB uI;tLD$ HTL+HH+AHOH\BHHDuHbfWI|sINHT$ LD$(HH+L+HHEHLBDH HYHY@Xf(LXBDYHY@XXuI;}%HD$ H+HDHL YLXI;|f(HIf(IMVLAIIIL+L+IJHUfHGJ f(f(YBYJHGf(LHGYf(H BHGYJH H IB uI;HGf(HYDDI;|HIãf.Cz0u.H HqH Hu HGHP0H^IMVLAIIIL+L+IJHUfffHGI f(f(H IYBYJHGf(LHGYBf(I DHGYJI LuI;HGf(HYDDI;|HIf."z-u+H HpH wHu HWHR0Hs)t$@5ޢ^E~.ffffff(YD迉HOHDI;|(t$@H%HtHu HGHP0HzHHpL\$PI[ Ik(Is0I{8IA^A]A\Ð\:V;>=B<=>?{@H\$Hl$Ht$H|$ ATAUAVHPHA3LH "H;tH H;tLs%MLMcuImMuH XHAII̅tHT$ Mu6Hht!IL$H`H;t]u@@t IEI$ttAHHh=?HMHIPI0IHIMVL\$ Ld$(LAIIL+L+IL+L+IHUJffHGADALI H IXBXJADHGLXBALHGILDXJHGI LuI;PHD$ H+HD H(XHGDI;|HJIMVL\$ Ld$(LAIIL+L+IL+L+IHUJBHGJ B\DJHGB\L"LHGB\H B)JHGB\ "H H IB uI;dHD$ H+HD H(\HGDI;|H^IMVL\$ Ld$(LAIIL+L+IL+L+IHUJ@HGBDBL"J \B\JBHGL\B "HGH B)\JHGH H IB uI;tLD$ HTL+HH+AHOH\BHHDuHbfWI|sINHT$ LD$(HH+L+HHEHLBDH HYHY@Xf(LXBDYHY@XXuI;}%HD$ H+HDHL YLXI;|f(HI(f(IMVLAIIIL+L+IJHUfHGJ f(f(YBYJHGf(LHGYf(H BHGYJH H IB uI;HGf(HYDDI;|HISf.ӛz0u.H HH (Hu HGHP0H^IMVLAIIIL+L+IJHUfffHGI f(f(H IYBYJHGf(LHGYBf(I DHGYJI LuI;HGf(HYDDI;|HI2f.z-u+H HH Hu HWHR0Hs)t$@5n^E~.ffffff(YDOHOHDI;|(t$@H%HtHu HGHP0H HHL\$PI[ Ik(Is0I{8IA^A]A\ÐBCEDgFp^E~.ffffff(YDWHOHDI;|(t$@H%HtHu HGHP0HnHHnL\$PI[ Ik(Is0I{8IA^A]A\Ðlmonplqrs@SH HًIOLHt:39Kv3L@ nfHCHDfWBD;KrIH [H\$WH HIHHtD@HWHHIVUHH\$0H _̋Q3tHIfWf.zu H;r3ø̋AH(HxAH;}HAH(H%lH lH5H $m3H(H\$WH HHHxEAH;}=MuH lH(6IlHGlHH\$0H _H lH،H lH\$0H _H\$Hl$H|$ ATH IHLHy3 AH;HOH;}H AH;HOH+HkHHt@Ht$0HpH~*HH+fID$H 7lkHHHFuHt$0HH\$8Hl$@H|$HH A\H\$Ht$WH@IHHMu*H kHH kH\$XHt$`H@_Hl$P3Hy AH;HOH;}H AH;HOH+HT$ IL舙uH|wHLCLL$(LT$0L\$8IL+L+L+IJ,HNIDH IHD HNIDHD HNIDHD IDHNHD uH;}1H/HLD$ HL+H+IHNHHHD u3Hl$PH\$XHt$`H@_@SUHXLBLHI@`HHH}iIHhHHujHt3HX][HyEHx!EH;}HE@iHHX][H iHH i3ۋHX][L;h QHD$xLL$0HD$(H$L$IHD$ hbHL$xH3hHX][H$uLD$0H$HHX][H|$HlhHHu H|$HHX][Ht$PH$3Ld$@L`H9\$x~+HEAhHt/IH$HH;\$x|HHt$PLd$@H|$HHX][Hu HGHP03H {hM@HhH g3HX][H\$VH`ILBLI@`HHtvHtlHgIH|$pHfHHu hHt H|$pH$H`^HyCHLHHH|$pH$H`^L;g QHD$0LL$xHD$(HD$8L$IHD$ fxsHD$8Hu&LD$xH$LHH$H`^HT$xH$HyH;| H~ H;~HL$xHu(H !gHBH gH$H`^LD$0HT$@HFtL$3H9T$0~HD@HKHJLD$8H;T$0|3H$H`^H fM@HH eH$H`^H\$WH IcHHu%H \fHH TfH\$0H _;Yr H eH\$0H _H fHGfH\$0HH _HAH%QeE3HHA@H% eAHA@H%dAH\$Ht$WH@HAHH sAH;tH H;tHHHWHYu3:H\dHHRdH\$PHt$XH@_DGHT$ Ht$t)H dHZH d3H\$PHt$XH@_ËW3tQLG eLL$ M+HL$ DA\f.fTf/G ~H;rHbHHbH\$PHt$XH@_ËW3tJLG dLL$ M+HL$ ffB\f.zufTf/G sH;rHbH\$PHt$XHHbH@_H(HQDAHJH(H%bH(HQDAH̓H(H%b@SH HQDAHH藓Jf.cf(z!uH bH܄H b3H [39Sv+ffHCHD^D;SrH"aHHaH [@SH HQDAHHK \bfTcf/vH`HH`H [H`HH`H [@SH@DAHHHT$ HCuH aHH a3H@[DCHKHT$ NH@[H%"a@SH0HH)t$ af(aHu7HSDCHHK f/v$H CaHH Ca3(t$ H0[3^9Sv*fHCf(HYDD;SrH_(t$ HHs_H0[LWHHHMKH,MC H7_t1DGH$HT$ ݎu"H z`HH r`3H_)$$D)$D`f(D)T$pD`fATfA/vH `HςH `3DHWH$H$D)d$`D)l$PD)t$@wHDcbG3DËfEWfA(fD(|TFDD L(HHYYXDYXLYXXuD;}HL A+ HHYXuf(FO fA/fD(f/vHOHT$ D)$D)$聏D h_fA(AY^fD/vfA( fA/vfA(UFfD/f(vfW5H_\=h_$HGL$(D$ YY@f/vAYlHHtlW f(fATf/[f(\_fATf/@\ ^fATf/v{H ^H H ^Hu HFHP03D($($H$D(d$`H$D(l$PD(t$@($D($D(T$pH_$fE(f(E\DYEXED\D^DYfA(EfD(YE^f(Df(A^9_HHGf(fA(HYL YDHFXAYL;_rH9_vGHf$HGfA(H\YD YLHFXL;_rHH \HoH \3@SHPHHLL$pHLD$xHZt.DCHL$xHT$ 胊uH \HiH \3HP[fWL$p)t$@f/5w\f/wqKLHtxE3D9CvJHPLL$ LL+ID$pHCI f(AH\AYDY XJD;CrI(t$@HP[H a[H~H a[3(t$@HP[Hl$Ht$H|$ ATH@IIcLHHT$ LH_tfWH\$P3DË˃|SEDD L(HHYYXDYXLYXXuD;}HT A+HHYXuD$pf/vH XZH}H XZ3f.Zzf(AHf(H|SHML D(H^^ LDD^^LDH;|H;}D H^DH;|HT$ DI;%sZf(HHMLD$ LL$(LT$0IHL+L+H+L+HHFHDALAH HYYYY\ALY@DY\ATY@DY\@D\@uH;}>HD$ L+HD$ H+L IYD HYH\D H;|ҸH\$PHl$XHt$`H|$hH@A\H\$Ht$WH0HIHSHHuH\$@Ht$HH0_G DOHWHHLD$ Ht$H3ɅHDHH\$@H0_@SHPA DILHQHHL$0D$ u3HP[DCHKHT$0I-?L&VIHVHP[HHX)x=WD)@fEWHpHx 3L`HL9yHXHh)pHcI WHHuH WH~tH W'HWH f(u HCHP0VHtf(HFH\t(YDX;~r(t$@Hl$hH\$`VLd$PH|$xHt$pHtf((|$0D(D$ HX(|$0fA(D(D$ HXH8)t$ fWf/f(vNVHt 3(t$ H8f(=(t$ H8H%UH8)t$ rfWf/f(vUHt 3(t$ H8f((t$ H8H%)UH(yHyH jUH U3H(Ãd| Hy۸H(H\$ VHDIHLyHL$0ScSy H'y d|*HiyH TH  U3H$(H^ËFH$H$3L$ fffffffHVDcA%}ȃHHkdLL0}˃*HcLZrdD$ HkdHL0RA܅x|dFH;r%}ȃLFHHcHkdHl0}˃AHcLrdHD$ HkdLL0}Ry Hw d|HxH SH S3 H_SH$H$L$ H$(H^H\$ VHHLHqScHL$0Qy HKw d|*HwH SH -S3H$(H^ËFH$H$3L$ HVDcA%}ȃHHkdLL0}˃*HcLBsdD$ HkdHL0,QA܅x|dFH;r%}ȃLFHHcHkdHl0}˃AHcLtdHD$ HkdLL0Py H v d|HLvH QH Q3 HQH$H$L$ H$(H^H\$Hl$VWATAUAVH03LLQ9THQHH QH ,PLD$pHT$xHL$ PIQHHMuIPHHHOLHHOHHH~QfA \wtAwlAHcAEH;}VAPHHLMOuLHH;|3OHu HGHP0HH\$`Hl$hH0A^A]A\_^LD$pHT$xHL$ NHtHu HFHP0HtHu HGHP03LD$SUVWAVAWHXHHILO395LH$uLIHHXA_A^_^][H%NGtDHL$ 3IF7I?OHHuHXA_A^_^][HLl$P1NLHuH u HCHP0~L$DMAMwtAA;GLcB9t t5u1H$IcBD |BD0NHEAIIcH;$yH u HCHP0tqH mMHVsH }NH u HCHP0L$IH:MtH u HCHP0L$IHMOH \NHqH N39wv,HLD$ fA8t HOHD0H IH;wr3L$Ll$PHXA_A^_^][@SH H30HHt>@Hư>HC MHCHuHSH@3H [HH [LI[VHPHIKIIKIK L3IKL pLqIHIs IsKuH\$hHP^H|$`H|$xHHLt2HOHLH;t"LuHL$xLHCSHL$x{HL$xt'HSAzH|$`H\$hHP^HAtDDKLCHwqHD$8HGmHT$8HD$@HmHD$H~t H KHDqH KH|$`H\$hHP^HCH0H|$0HtMHKtHOHKH;tKuHL$0KHCH|$`@3H\$hHP^HCHpH|$`H\$h3HP^H\$WHP)t$@5!Lf()|$0D)D$ HHf(fD(2f(fWf/vX Kf(AXf(2DYKfD/^5K,΅tgt?tH IHHpH J3HCHfW%KG KfWCfWG{CfWJHHGaHHHCHGQY=J^=Jf(1f(f(1f(f(YKY\Y3YCXwH\$`(t$@(|$0D(D$ HP_@WH HHLD$@HoHHu3H _ËOH\$0v}HHt9HWHH_ T$@tHH\$0H _H u HCHP03H\$0H _@SH0HHLD$PH oHGu3H0[HK[ T$PHT$ ID$ L$(utHBGHH8GH0[H\$WH0HڋQHHwu$H rHHnH jH3H\$@H0_HT$ AHvtHGD$(L$ YYH\H\$@H0_H%GH\$WH@HڋQHHUwu$H GH+nH G3H\$PH@_HT$ AH vtL$ D$(H_)t$0T/ f(CB/\Y5VH^56Hf((t$0H\$PH@_H%F@SH0HQDAH)t$ Hw.HCf(@.f(H kYGfH~^Gf(fI~(t$ H0[H%E@SH HHLL$@HmLD$HH:Eu3H [D$@H[YLG^\GD$@+.YD$HD$@.YD$HCHDHHDH [@SH H30HHt>@Hư>HC EHCHuHSH@3H [HH [LI[VHpHIKIIKIKLIKIK 3IKL rrL{sIHIs IsIs[DuH$Hp^H$H$HHLEt5HOHEEH;t%BEuH$EHCSH$KtH$tHSA s HAtPDKLCHxHD$PHiHT$PHD$XHjHD$`HjHD$hvt H LDHuxH LDHCH0H|$@Ht=HBDtHOH;DH;t8DuHL$@ DHC@HCHpHL$HHt#OqtHL$HCHC@HCHp3H$H$Hp^HHXWH)p5]D)xf(f(HHD)@D)PD)XD)`HpI*fD(fWfA/vDXD&D^DVH$$fA(AYXfA(AYXfA(AYXf/vH BHoH B3OD)L$`D)l$ D-1Cf(A\fT HCf/v!f(*fA(^DYDYDYD HCfA(XfA(f()-CYf/A^,΅dtH @HxvH A3}fA(fA(fA(AYAYAYf(f(A\AXA\AXEYYKYSfA(AYYXfA(AYXf(A\AXY#YCXYKXgY+Y[DYSXAXofA(fA(fA(EYAYAYAYEYEYYf(YKDYDYE\E\DY#YYf(YCDYE\DXf(DXD'DY[YYCDXDXD_Y#YSDYSXAXgfA(fA(fA(AYAYAYf(f(AXA\AXA\EYYKYSfA(AYYXfA(AYXf(AXA\Y#YCXYKXgY+Y[DYSXAXoFHHHCHGHCHG+DYb@D^q@fA(/'fD(fA(2'fA(fA(D\fD(fA(AYAYAYEYAYfA(fA(fA(f(AYAYEYAYEYAYXEXf(YAYEY\XX\YCAYEYEXXf(YKA\DXXDY[Y#YCDXDXD_DYKY;DYSDXEXDOD(L$`D(l$ L$I[A(sA({E(CE(SE([E(cI_@WHPHHLL$pHrLD$xH<t(WHL$pYmuH =HrH =3HP_HL$pHT$0AltߋOH\$`qHHtDG HWHH\$xLD$0D$ tHH\$`HP_H u HCHP03H\$`HP_LSH`HHMKH/qMC H;t+SH$vluH =HrH <3H`[H$HT$HA+ktHKC $LD$HHT$0HD$ HD$0HAHD$8HAHD$@tH;HH ;H`[@SH@HH)t$0a<f(Y5 =^5=O<Ht 3(t$0H@[f()|$ #f(f(#Kf(pLHu(|$ (t$0H@[HPHCf(Hf(H HCYHY@\JHCYpYxIX(|$ r(t$0H@[@SH`HH)|$@;f(Y=-<^==<o;Ht 3(|$@H`[f()t$P"f(f("HK(|$@Hf(HD$ HAHD$(HA\$(HD$0f(YYT$0f(YY(t$PX\IQHQ9HHG9H`[@SH@HH)t$0:f(Y5M;^5];:Ht 3(t$0H@[f()|$ !f(f("Kf(FnLHu(|$ (t$0H@[HCISf(f(YHYX HCHHHJHCYpY8I\(|$ r(t$0H@[@SH`HH)|$@9f(Y=m:^=}:9Ht 3(|$@H`[f()t$P!f(f($!HK(|$@Hf(HD$ HA\$ HD$(HAf(YYHD$0T$0f(YY(t$P\QX H7HH7H`[@SH@HH)t$08f(Y59^598Ht 3(t$0H@[f()|$ ? f(f(D Kf(lLHu(|$ (t$0H@[HCISf(f(YY@\ HCYpY8X(|$ r(t$0HCHHIHJH@[@SH`HH)|$@8f(Y=8^=87Ht 3(|$@H`[f()t$P_f(f(dHK(|$@Hf(HD$ HA\$ HD$(HAf(YYT$(HD$0f(YY(t$PXQ\ H5HH5H`[@VWH(HQHHxfu H 7HeH 63H(_^HGH\$@Hl$HHnLd$PLl$ L-!iL%{I;tMI;tHNHH;v3 H86HAHHduH63H_NljHHuHGI;tI;t H53rMEH@YCYK\UEYCY\PMEYKY\HHGI;tI;t Hb5HLd$PHl$HH\$@Ll$ H(_^H\$WH@HڋQHHdu$H 5HcH z53H\$PH@_DGHT$ HctHW_DHe3ҋfWf(|VCDD L(HIYYXDYXLYXXu;} HL +‹ HHYXuYf(Bf.65f(z&u$H 4H8fH 43H\$PH@_HOHT$ Dd^Y05^5H\$PH@_H%3@SH@HQDAHD)L$ HdfWf.fD(z2u0f(f(fH~fI~fI~H \D(L$ H@[H%2HCD)D$0@A^LHCfD(@DYo4D^N4AfA(fA(H \fI~fH~Y>4^4f(fI~D(D$0D(L$ H@[H%52LSH`HIK HIKMKMCH+hH1u3H`[$H[)t$P)|$@$Y3^3Y=~3$^=3$?f(f(Yt$0>Y3$f($Yt$0Ys$(|$@(t$PYD$0CH0HH0H`[@SH HyHtHAHu HIHAP0HH [H%0@SH HAHHtHH ycuHWH Hcu HHcH9=ct!H ctMĺIccH\$@Hl$HH|$PLd$XH A_A^A]HHXHpHxATH0ILXbu9#cu 3ۉXtu7H"HtЋ؉D$ LƋI0؉D$ LƋI؉D$ u5u1L3IL3ILMt L3IAӅtu7LƋI#ˋىL$ tHzHtLƋIЋ؉D$ 3ۉ\$ bH\$@Ht$HH|$PH0A\H\$Ht$WH IHukLNjHH\$0Ht$8H _H a@SH HH aHD$8Hu H~H aXHD$8H aFHD$@H@HLD$@HT$8HHL$8 HqaHL$@HWaSHH [H(GHH(H\$WH H#H=HHtHH;rH\$0H _H\$WH HH=HHtHH;rH\$0H _HMZf9t3HcH!>20  4 `!t P!t P!t P!t P& & xh 4 p2p!4P!4PR0  4 Rpooh 4 rphR02020rrt 4 `AA<72xh 4p!dA!A!  ҟ !ҟ p!4 `֤D!4 `֤D0hr0!x g|!x g|LLhx0hr0!x'!x'LLhx0hr0!x!xLLhx0X XS JT E4Bp`  4 rpoor0QQxLh020202020 d T 4 2p* *xhdT4!t{!{!{!{!t{N NFd>4pP!  H!H2020  4 2p20  d 2p!4!4!  4 2p20  t T 422Pt d 4R71#d42 p201  4 2p BWB  4 2p0xP(^.D\J2$ *8N\$6F\pzbRD0rZH2n\J6v7PyObject_SelfIterPyObject_GenericGetAttrPyType_IsSubtypelPyComplex_TypePyNumber_CheckPyErr_Occurred$PyFloat_AsDoublePyErr_SetString PyExc_TypeErrorpPySequence_GetItemPyExc_ValueError{PySequence_SizeiPySequence_CheckPyExc_SystemError(PyFloat_FromStringqPySequence_GetSliceCPyUnicode_FindLPyUnicode_FromStringJPyUnicode_FromObjectPyErr_NoMemoryPyMem_Malloc$_PyObject_NewPyMem_Free_Py_NotImplementedStructPyExc_ZeroDivisionError'PyFloat_FromDouble_PyErr_BadInternalCallPyExc_IndexErroryPyList_NewPyErr_FormatPySlice_GetIndicesExPySlice_TypePyNumber_AsSsize_t_Py_TrueStruct_Py_FalseStruct_Py_NoneStruct PyArg_ParseTuplePyOS_snprintfPyErr_RestorePyErr_ClearPyTuple_SetItemPyTuple_NewPyUnicode_AsUnicodePyErr_FetchPyErr_ExceptionMatchesPyExc_AttributeErrorPyExc_RuntimeErrorPyObject_GenericSetAttr PyArg_ParseTupleAndKeywordsrPy_BuildValuePyObject_FreePyLong_FromSsize_tPyBool_FromLongPyNumber_PowerDPyCapsule_NewPyModule_AddObjectPyModule_Create2PyType_Readypython33.dllmemcpyUfloorsqrt,acossinmemsetWfmodCcos3atan2MSVCR100.dll_malloc_crt_initterm_initterm_ecfree_encoded_null_amsg_exit__C_specific_handler__CppXcptFilter@__clean_type_info_names_internal[_unlockH__dllonexit_lock_onexitEncodePointerDecodePointerSleepDisableThreadLibraryCallsQueryPerformanceCounterGetTickCountGetCurrentThreadIdGetCurrentProcessIdGetSystemTimeAsFileTimeKERNEL32.dll(Rmath.pydPyInit_matha sequence is expectedSequence has the wrong length.Wrong internal call to PyVectorCompatible_Check.%s%g, [internal error while converting str slice to floatxepsilonsmall value used in comparisonsWrong internal call to PyVector_NEW.  src/math.cydivision by zero%s%g)>, division by zerosubscript out of range.0A0ttt@( 9JPcpRkZsubscript out of range.item deletion is not supportedVector object doesn't support item deletion%s%g, u0uvuvvector indices must be integers, not %.200s, Deletion of vector components is not supported.list indices must be integers, not %.200s)> u@x0zCannot delete the x attributesrc/math.c)>This operation is not supported by vectorsdotCan't normalize Vector of length ZeroCannot perform dot product with this type.xCannot scale a vector with zero lengthOd:slerp%s%g]lengthyArgument 1 must be a vector.Argument 2 must be in range [-1, 1].can't use slerp with Zero-VectorrotatexSLERP with 180 degrees is undefined.Od:Vector.lerpExpected Vector as argument 1Argument 2 must be in range [0, 1]yNormal must not be of length zero.Attribute assignment conflicts with swizzling.\internal snprintf call went wrong! Please report this to pygame-users@seul.orgInternal buffer to small for snprintf! Please report this to pygame-users@seul.orgzcannot calculate cross Productexpected an vector.)>(dd):Vector2.from_polarlength() -> float returns the euclidic length of the vector.length_squaredlerplength_squared() -> float returns the squared euclidic length of the vector.rotate(float) -> Vector2 rotates a vector by a given angle in degrees.rotate_ipnormalize_ipis_normalizedscale_to_lengthreflectrotate_ip(float) -> None rotates the vector by a given angle in degrees in place.reflect_ipdistance_to(ddd)slerp(Vector2, float) -> Vector2 returns a spherical interpolation to the given vector.distance_squared_tolerp(Vector2, float) -> Vector2 returns a linear interpolation to the given vector.dotnormalizeelementwise(ddd)normalize() -> Vector2 returns a vector with the same direction but length 1.normalize_ip() -> None normalizes the vector in place so that its length is 1.is_normalized() -> Bool tests if the vector is normalized i.e. has length == 1.cross(Vector2) -> float calculates the cross- or vector-productdot(Vector2) -> float calculates the dot- or scalar-product with the other vectorlengthxangle_toangle_to(Vector2) -> float calculates the angle to a given vector in degrees.scale_to_length(float) -> None scales the vector to a given length.rotatereflect(Vector2) -> Vector2 returns a vector reflected of a given normal.reflect_ip(Vector2) -> None reflect the vector of a given normal in place.distance_to(Vector2) -> float calculates the euclidic distance to a given vector.from_polarpygame.math.Vector2distance_squared_to(Vector2) -> float calculates the squared euclidic distance to a given vector.4Rotation Axis is to close to Zeroelementwise() -> VectorElementwizeProxy The next operation will be performed elementwize.yas_polaras_polar() -> (r, phi) returns a tuple with radial distance and azimuthal angle.|OOO:Vector3cannot calculate cross Productexpected an vector.from_polar((r, phi)) -> None Sets x and y from a polar coordinates tuple. H @`   p@  X  0    p  P   @ P (  8    @ 0   @0||$||angle to zero vector is undefined.Vector2() -> Vector2 Vector2(Vector2) -> Vector2 Vector2(x, y) -> Vector2 Vector2((x, y)) -> Vector2 a 2-Dimensional Vector(`00`P}P P float returns the euclidic length of the vector.length_squared() -> float returns the squared euclidic length of the vector.rotate(Vector3, float) -> Vector3 rotates a vector by a given angle in degrees.rotate_iprotate_ip(Vector3, float) -> None rotates the vector by a given angle in degrees in place.rotate_xrotate_x(float) -> Vector3 rotates a vector around the x-axis by the angle in degrees.rotate_x_iplerprotate_x_ip(float) -> None rotates the vector around the x-axis by the angle in degrees in place.rotate_yrotate_y_ipcrossrotate_y(float) -> Vector3 rotates a vector around the y-axis by the angle in degrees.scale_to_lengthreflectrotate_y_ip(float) -> None rotates the vector around the y-axis by the angle in degrees in place.rotate_zrotate_z_ipmathrotate_z(float) -> Vector3 rotates a vector around the z-axis by the angle in degrees.distance_squared_torotate_z_ip(float) -> None rotates the vector around the z-axis by the angle in degrees in place.normalize_ipis_normalizedfrom_sphericalpygame.math.Vector3slerp(Vector3, float) -> Vector3 returns a spherical interpolation to the given vector.division by zerolerp(Vector3, float) -> Vector3 returns a linear interpolation to the given vector.normalizereflect_ipdistance_tonormalize() -> Vector3 returns a vector with the same direction but length 1.normalize_ip() -> None normalizes the vector in place so that its length is 1.is_normalized() -> Bool tests if the vector is normalized i.e. has length == 1.cross(Vector3) -> float calculates the cross- or vector-productdot(Vector3) -> float calculates the dot- or scalar-product with the other vectorangle_toelementwiseas_spherical__length_hint__division by zeroangle_to(Vector3) -> float calculates the angle to a given vector in degrees.scale_to_length(float) -> None scales the vector to a given length.division by zeroreflect(Vector3) -> Vector3 returns a vector reflected of a given normal.reflect_ip(Vector3) -> None reflect the vector of a given normal in place.distance_to(Vector3) -> float calculates the euclidic distance to a given vector.pygame.math.VectorIteratordivision by zerodistance_squared_to(Vector3) -> float calculates the squared euclidic distance to a given vector.src/math.cdivision by zeroelementwise() -> VectorElementwizeProxy The next operation will be performed elementwize.as_spherical() -> (r, theta, phi) returns a tuple with radial distance, inclination and azimuthal angle.from_spherical((r, theta, phi)) -> None Sets x, y and z from a spherical coordinates 3-tuple.4 @ ``@  000P Pp$`@ 0 (0 80 !!`"(`p"< ||||t}0}Vector3() -> Vector3 Vector3(Vector3) -> Vector3 Vector3(x, y, z) -> Vector3 Vector3((x, y, z)) -> Vector3 a 3-Dimensional Vectorsrc/math.cdivision by zero8(`00&P}P"0&М`division by zero     )src/math.cdivision by zerodivision by zerodivision by zeropow() 3rd argument not supported for vectorsnegative number cannot be raised to a fractional powerpygame.math.VectorElementwiseProxy`@p@ ++src/math.cenable_swizzlingenables swizzling.disable_swizzlingdisables swizzling.pygame module for vector classesx.@..p.$./Vector2Vector3VectorElementwiseProxyVectorIteratorpygame.math._PYGAME_C_API_PYGAME_C_APIu2-+] fEP77(4L#d#WpWFFooR`n$n@T&d&&'&'5(@(M/M///0077889 9-@$-@v@@v@ATAHdHHHIJ Q QVQVQeRpR}Y}YYYZZa$a6b@6bEcTPc]jd]jjjkkrrss%t0tttt0usuuuviv ivv vv4v.xD@xqyXqyydyyxyzz*z0zdzdzzzzz|||P}4 @_(p0r8ހ@H)T)`|̈́̈́ @H<\Pp --JJ(0|(׌4@0 Hڐdo>>Δ@P::0$@Ԙ8PLXLhlpx4@N`МAAҟ ҟ!!P4`֤D֤L9`@t g|gק''bb""x$V8`ԬHQd`Sp`uP{{п п0H`[xp9@. P  E(HdDtD[\P  2 @ HPX0HPX` xx (8@HX`hxȡء (8@HX`hxȢآ (8@HX`hxȣУ8@HPhpxȥХإ Тآ(08HPXhpxȣУأ(08HPXhpxȤФؤ(08HPXhpxȥХإ08@X`hا0HXhpx (x8@HЫث@ (8