
DESIGN SIMULATION DESIGN, SIMULATION,
TESTING
CSSE 120—Rose Hulman Institute of Technology

Designing/implementing a larger programg g/ p g g p g

Until now, our programs have been small and simpleUntil now, our programs have been small and simple
Possible exceptions: dayOfYear, speedReading

For larger programs we need a strategy to help us For larger programs, we need a strategy to help us
be organized
One common strategy: top-down designOne common strategy: top down design

Break the problem into a few big pieces (functions)
Break each piece into smaller piecesBreak each piece into smaller pieces
Eventually we get down to manageable pieces that do
the details

Q1-2

Example: Two-player blackjack (21)p p y j ()

Uses a regular deck of cardsUses a regular deck of cards
Player and Dealer each initially get two cards
Player can see both of own cards but only one of Player can see both of own cards, but only one of
dealer's cards
Suit is irrelevant, only denomination determines Suit is irrelevant, only denomination determines
points per card:

Ace: one point or 11 points.p p
2-10: point value is the number of the card.
face card: 10 points

Object: Get as close as you can to 21 points in your
hand without going over Q3a

Blackjack illustrationj

We won't develop We won t develop
a GUI today, but
this image from a g
GUI Blackjack
game* illustrates
how the game
goes

* from Lewis and Chase,
Java Software Structures

Blackjack playj p y

Player has the option to take one or more "hits" Player has the option to take one or more hits
(cards) or to "stay" (keep the current hand)
If a hit increases the Player's score to more than 21, If a hit increases the Player s score to more than 21,
he is "busted" and loses
If the Player is not busted, the Dealer plays, but If the Player is not busted, the Dealer plays, but
with more constraints

If the Dealer's score is less than 16, (s)he must take a hit , ()
Otherwise, (s)he must stay

If neither player is busted, the one with the highest-p y , g
scoring hand wins

Q3b

Program specificationsg p

The blackjack program will allow a single player to The blackjack program will allow a single player to
play one hand of blackjack against the computer,
starting with a fresh deck of cardsg
It will have a simple text interface
It will repeatedly display the state of the game and It will repeatedly display the state of the game and
ask the Player whether (s)he wants a hit
Once the Player says NO, the Dealer will playOnce the Player says NO, the Dealer will play
The results will be displayed

Initial designg

Similar to the top-level design of the Racquetball Similar to the top level design of the Racquetball
simulator from the textbook, we want to break up
the blackjack algorithm into a few high-level tasksj g g
With one or two other people, quickly brainstorm
what those tasks might beg

Q4

Top-level algorithmp g

Create initial card deckCreate initial card deck
Deal initial cards
Display game stateDisplay game state
Player plays until busted or chooses to stop
D l l il i d Dealer plays until required to stop
Report who wins

Top-level functions called by main()p y ()

newDeck()newDeck()
Creates and returns a complete deck of cards

initialDeal(deck)
deals cards from the deck to each player, returns the hands

displayGameState(playerHand, dealerHand, showAll)
shows visible cards and player's scores showAll is booleanshows visible cards and player s scores. showAll is boolean

playerPlays(playerHand, dealerHand, deck)
Allows player to choose hit or stayp y y

dealerPlays(playerHand, dealerHand, deck)
Dealer does hit or stay, based on the rules

finalTally(playerHand, dealerHand)
Determines and displays who wins.

Q5

Complete code for main()p ()

d f i ()def main():
deck = newDeck()
player, dealer = initialDeal(deck)
displayGameState(player, dealer, False)
playerPlays(player, dealer, deck)
if handScore(player) > winningScore:if handScore(player) > winningScore:

print "BUSTED! You lose."
else:

i t "N D l ill l "print "Now Dealer will play ..."
dealerPlays(player, dealer, deck)
finalTally(player, dealer)

displayGameState(player, dealer, True)

Top-level Structure Diagramp g

main

newDeck deck dealerHand,
playerHand

i i i lD l

finalTally
deck

dealerHand,
playerHand dealerHand,

playerHand,initialDeal
dealerPlays

dealerHand,
playerHand

p aye a d,
deck

playerPlays

playerHand,
deck dealerHand,

playerHand,
showAll hand

score

displayGameState
Key:
formal parameters
return values

handScore

hand

Q6

Some preliminary data valuesp y

Define some constants used by many functions
suits = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

cardNames = ['Ace', 'Deuce', '3', '4', '5',
'6', '7', '8', '9', '10',
'Jack', 'Queen', 'King']

winningScore = 21

dealerMustHoldScore = 16

Card is represented by a list: [cardName, suit]
Examples: ['Ace','Clubs'] or ['7','Diamonds']# p [,] [,]
A hand or a deck is a list of cards.

Q7

Designing newDeck()g g ()

Work in groups of 4 at a whiteboardWork in groups of 4 at a whiteboard
Write steps of newDeck() in English
Write the codeWrite the code
Take about 10 minutes
R f Refer to:

Data values on handout
S di h dStructure diagram on handout

newDeck() – returns complete deck() p

start with an empty liststart with an empty list
for each cardName/suit pair

generate a card with that name and suitg
add card to list

Return the list # Create an entire deck of cards
def newDeck():

deckList = []
for s in suits:

for c in cardNames:
deckList.append([c, s])

return deckList

initialDeal(deck) ()

start with two empty handsstart with two empty hands
deal two cards to each hand
return the two handsreturn the two hands

Deal two cards to each player.
def initialDeal(deck):def initialDeal(deck):

playerHand = []
dealerHand = []
for i in range(2):for i in range(2):

dealTo(playerHand, deck)
dealTo(dealerHand, deck)

return playerHand dealerHandreturn playerHand, dealerHand

initialDeal Structure Diagramg

main

dealerHand,
playerHand

deck # Deal two cards to each player.
def initialDeal(deck):

playerHand = []
initialDeal

deck

playerHand playerHand = []
dealerHand = []
for i in range(2):
dealTo(playerHand, deck)

dealTo

deck,
hand dealTo(dealerHand, deck)

return playerHand, dealerHand

Key:
formal parameters
return values

Q8-9

dealTo(hand, deck)(,)

Pick a random card from the deck and move it to Pick a random card from the deck and move it to
the hand

deal a card from this deck and place it in this hand.
def dealTo(hand, deck):

hand.append(dealCard(deck))

initialDeal Structure Diagramg

main

dealerHand,
playerHand

deck # Remove a random card from
the deck and return it

initialDeal

deck

playerHand # the deck and return it
def dealCard(deck):

pos = randrange(len(deck))
card = deck[pos]

dealTo

deck,
hand

card deck[pos]
deck.remove(card)
return card

deck card
Key:

dealCard

Key:
formal parameters
return values

Let's skip ahead to dealerPlays()p y ()

main

newDeck
finalTally

initialDeal
playerPlays

dealerPlays

dealerHand,
playerHand,
deck

dealTo

dealCard displayGameState
Key:

handScore

Key:
formal parameters
return values

Designing dealerPlays()g g y ()

Work in groups of 4 at a whiteboard Work in groups of 4 at a whiteboard

Write steps of dealerPlays() in EnglishWrite steps of dealerPlays() in English
Write the code:

Do you need new functions? Add them to your structure Do you need new functions? Add them to your structure
chart

Take about 10 minutesTake about 10 minutes

dealerPlaysy

while dealerMustTakeaHitwhile dealerMustTakeaHit
deal a card to Dealer's hand

Dealer takes hits until no more hits allowed.
def dealerPlays(player, dealer, deck):

displayGameState(player, dealer, True)
while dealerHit(dealer):

sleep(3)sleep(3)
print "Dealer takes a hit"
dealTo(dealer, deck)
displayGameState (player, dealer, True)

Determine whether dealer "takes a hit" (gets another card).
def dealerHit(dealerHand):

d l h d (d l d)dealerScore = handScore(dealerHand)
return dealerScore < dealerMustHoldScore

Design so farg

main

newDeck

d l Pl

finalTally
dealerHand,
playerHand,
deck

initialDeal

playerPlays

dealerPlays

dealTo

dealerHand hit?
(boolean)

dealCard displayGameState
dealerHit

dealerHand score
(int)

handScore

()
Key:
formal parameters
return values

Code for handScore()()

Calculate the score for the whole hand# Calculate the score for the whole hand.
def handScore(hand):

score = 0
hasAce = Falseas ce a se
for card in hand:

val = cardValue(card)
score += val
if val == 1:

hasAce = True
if score <= winningScore - 10 and hasAce:

score = score + 10
return score What if they have

two or more aces?two or more aces?

Code for cardValue()()

calculate how many points this card is worth.
Face cards count 10.
Ace Counts 1 (or 11, but that adjustment is
made at the handScore level).
def cardValue(card):

name = card[0]
pos = cardNames index(name)pos = cardNames.index(name)
if pos < 10: # if not a face card.

return pos + 1

return 10

What we have developed so farp

main

newDeck

playerPlays
dealerPlays finalTally

initialDeal
playerPlays

dealerHit

dealTo
displayGameState

dealCard
handScoreRemaining to be done: details of

PlayerPlays , finalTally,
cardValuedisplayGameState and functions

that they call

Bottom-up Testingp g

If we wrote all of this code and tried to run it all If we wrote all of this code and tried to run it all
together, there would probably be so many errors
that it would be very hard to track down their y
causes
So instead of testing the whole program at once, we g p g
want to test each function individually.
To do this, we want to start with functions at the
bottom of the structure chart, because they do not
depend on other functions
Tests of individual functions are called Unit Tests

Complete Structure Diagramp g

main

newDeck

playerPlays
dealerPlays finalTally

initialDeal
playerPlays

playerHit dealerHit

dealTo
displayGameState

dealCard
handScore

displayHand

cardString

cardValueRemaining code is on the
following slides

The display functionsp y

Show the contents of both players' hands.
def displayGameState(playerHand dealerHand gameOver):def displayGameState(playerHand, dealerHand, gameOver):

displayHand('Dealer', dealerHand, gameOver)
displayHand('Player', playerHand, True)

print out the contents of this hand If the hand is the dealer's# print out the contents of this hand. If the hand is the dealer s
and the player hasn't played yet, showAll will be False.
def displayHand(name, hand, showAll):

print name + "'s hand:",
if showAll:

print "(score is %d)" % (handScore(hand))
print cardString(hand[0])

else:
print
print ' Face Down'

print the rest of the hand.
for i in range(1, len(hand)):

print cardString(hand[i])

return a string that represents the given card.
def cardString(card):

return ' ' + card[0] + " of " + card[1]

playerPlays and PlayerHitp y y y

Player takes hits until Busted or stops requesting
hits.
def playerPlays(player, dealer, deck):

hil l Hit(h dS (l))while playerHit(handScore(player)):
dealTo(player, deck)
displayGameState(player, dealer, False)

Ask player whether she wants another card.
def playerHit(playerScore):p y (p y)

if playerScore > winningScore:
return False

answer = win_raw_input("Hit? (Y/N) ")
firstChar ans er[0]firstChar = answer[0]

return firstChar == 'y' or firstChar == 'Y'

finalTally function

Figure out who won.
def finalTally(player, dealer):

playerScore = handScore(player)playerScore = handScore(player)
dealerScore = handScore(dealer)
if dealerScore > winningScore:

print "DEALER IS BUSTED, YOU WIN"
elif dealerScore > playerScore:

print "DEALER WINS"p
else:

print "YOU WIN!"

