
MORE STRINGS AND

FILE PROCESSING

CSSE 120 – Rose-Hulman Institute of Technology

Bonus Points

 If you did the Eclipse configuration for today, show

me:

 The output of either spam.py or greeting.py

 spam.py source code if you have it

 While I am checking people‘s code, please do

question 1 on the quiz (review)

Q1

Day, Month  Day of year

 When calculating the amount of money required to

pay off a loan, banks often need to know what the

"ordinal value" of a particular date is

 For example, March 6 is the 65th day of the year (in a

non-leap year)

 We need a program to calculate the day of the

year when given a particular month and day

The Software Development Process

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Phases of Software Development

 Analyze: figure out exactly what the problem to be

solved is

 Specify: WHAT will program do? NOT HOW.

 Design: SKETCH how your program will do its work,

design the algorithm

 Implement: translate design to computer language

 Test/debug: See if it works as expected.

bug == error, debug == find and fix errors

 Maintain: continue developing in response to needs

of users

String Representation

 Computer stores 0s and 1s

 Numbers stored as 0s and 1s

What about text?

 Text also stored as 0s and 1s

 Each character has a code number

 Strings are sequences of characters

 Strings are stored as sequences of code numbers

 Does it matter what code numbers we use?

 Translating: ord(<char>) chr(<int>)

Q2-3

Reminder: input() and raw_input() are

related through the eval function

 Syntax:

 eval(<string>)

 Semantics

 Input: any string

Output: result of evaluating the string as if it were a

Python expression

 How does eval relate them?

Consistent String Encodings

 Needed to share data between computers

 Examples:

 ASCII—American Standard Code for Info. Interchange

 ―Ask-ee‖

 Standard US keyboard characters plus ―control codes‖

 8 bits per character

 Extended ASCII encodings (8 bits)

 Add various international characters

 Unicode (16+ bits)

 Tens of thousands of characters

 Nearly every written language known
Q4

String Formatting

 The % operator is overloaded

Multiple meanings depending on types of operands

 What does it mean for numbers?

 Other meaning for <string> % <tuple>

 Plug values from tuple into ―slots‖ in string

 Slots given by format specifiers

 Each format specifier begins with % and ends with a

letter

 Length of tuple must match number of slots in the string

Format Specifiers

 Syntax:

 %<width>.<precision><typeChar>

 Width gives total spaces to use

 0 (or width omitted) means as many as needed

 0n means pad with leading 0s to n total spaces

 -n means ―left justify‖ in the n spaces

 Precision gives digits after decimal point, rounding if needed.

 TypeChar is:

 f for float, s for string, or d for decimal (i.e., int)

 Note: this RETURNS a string that we can print

 Or write to a file using write(string), as you‘ll need to do on today‘s

homework

Q5

File Processing

 Manipulating data stored on disk

 Key steps:

Open file

 For reading or writing

 Associates file on disk with a file variable in program

Manipulate file with operations on file variable

 Read or write information

 Close file

 Causes final ―bookkeeping‖ to happen

Q6

File Writing in Python

 Open file:

 Syntax: <filevar> = open(<name>, <mode>)

 Example: outFile = open('average.txt', 'w')

 Replaces contents!

 Write to file:

 Syntax: <filevar>.write(<string>)

 Close file:

 Syntax: <filevar>.close()

 Example: outFile.close()

File Reading in Python

 Open file: inFile = open('grades.txt', 'r')

 Read file:

 <filevar>.read() Returns one BIG string

 <filevar>.readline() Returns next line, including \n

 <filevar>.readlines() Returns BIG list of strings,

1 per line

 for <ind> in <filevar> Iterates over lines efficiently

 Close file: inFile.close()

 Create a program that reads and prints itself

A ―Big‖ Difference

 Consider:

 inFile = open ('grades.txt', 'r‗)

for line in inFile.readlines():

process line

inFile.close()

 inFile = open ('grades.txt', 'r‗)

for line in inFile:

process line

inFile.close()

 Which takes the least memory?

Q7

Up Next: Objects

 Why do we apply some operations like this:

 infile = open('file.txt','r')

 abs(-1.2)

 and others like this:

 infile.read()

 circle.draw(win)

 Files and circles are objects—data plus operations

 <object>.<methodName>() is a method call

 Tells object to do something

Practice

 Hand in quiz

 Start working on HW5

 On Angel

 Lessons  Homework  Homework 5 

Homework 5 Instructions

Q8

