
CHARACTER STRINGS

CSSE 120 – Rose-Hulman Institute of Technology

Bonus Points

 If you did the Eclipse configuration for today, show

me:

 The output of either spam.py or greeting.py

 spam.py source code if you have it

 While I am checking people’s code, please do

question 1 on the quiz (review)

Q1

Day, Month  Day of year

 When calculating the amount of money required to

pay off a loan, banks often need to know what the

"ordinal value" of a particular date is

 For example, March 6 is the 65th day of the year (in a

non-leap year)

 We need a program to calculate the day of the

year when given a particular month and day

The Software Development Process

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Phases of Software Development

 Analyze: figure out exactly what the problem to be

solved is

 Specify: WHAT will program do? NOT HOW.

 Design: SKETCH how your program will do its work,

design the algorithm

 Implement: translate design to computer language

 Test/debug: See if it works as expected.

bug == error, debug == find and fix errors

 Maintain: continue developing in response to needs

of users

Strings (character strings)

 String literals (constants):

 "One\nTwo\nThree"

 "Can’t Buy Me Love"

 ′I say, "Yes." You say, "No." ′

 "'A double quote looks like this \",' he said."

 """I don't know why you say, "Goodbye,"

I say "Hello." """

Q2-3

String Operations

 Many of the operations listed in the book, while they work

in Python 2.5, have been superseded by newer ones

 + is used for String concatenation: "xyz" + "abc"

 * is used for String duplication: "xyz " * 4
 >>> franklinQuote = 'Who is rich? He who is content. ' +

'Who is content? Nobody.'

 >>> franklinQuote.lower()

'who is rich? he who is content. who is content? nobody.'

 >>> franklinQuote.replace('He', 'She')

'Who is rich? She who is content. Who is content? Nobody.'

>>> franklinQuote.find('rich')

Q4-5

Strings as Sequences

 A string is an immutable sequence of characters

 >>> alpha = "abcdefg "

 >>> alpha[2]

 >>> alpha[1:4]

 >>> alpha[3] = "X" # illegal!

Q6-7

Strings and Lists

 A String method: split breaks up a string into separate

words
 >>> franklinQuote = 'Who is rich? He who is content. ' +

'Who is content? Nobody.’

 >>> myList = franklinQuote.split()

['Who', 'is', 'rich?', 'He', 'who', 'is', 'content.',

'Who', 'is', 'content?', 'Nobody.’]

 A string method: join creates a string from a list
 '#'.join(myList)

 'Who#is#rich?#He#who#is#content.#Who#is#content?#Nobody.'

 What is the value of myList[0][2]?

 Finish the exercises in session04.py that you downloaded

last time.

Getting a string from the user

Q9, take a break

String Representation

 Computer stores 0s and 1s

 Numbers stored as 0s and 1s

What about text?

 Text also stored as 0s and 1s

 Each character has a code number

 Strings are sequences of characters

 Strings are stored as sequences of code numbers

 Does it matter what code numbers we use?

 Translating: ord(<char>) chr(<int>)

Q10-11

input() and raw_input() are related

through the eval function

 Syntax:

 eval(<string>)

 Semantics of eval

 Input: any string

Output: result of evaluating the string as if it were a

Python expression

 How does eval relate raw_input to input??

Consistent String Encodings

 Needed to share data between computers, also

between computers and display devices

 Examples:

 ASCII—American Standard Code for Info. Interchange

 ―Ask-ee‖

 Standard US keyboard characters plus ―control codes‖

 8 bits per character

 Extended ASCII encodings (8 bits)

 Add various international characters

 Unicode (16+ bits)

 Tens of thousands of characters

 Nearly every written language known
Q12

String Formatting

 The % operator is overloaded

Multiple meanings depending on types of operands

 What does it mean for numbers?

 Other meaning for <string> % <tuple>

 Plug values from tuple into ―slots‖ in string

 Slots given by format specifiers

 Each format specifiers begins with % and ends with a

letter

 Length of tuple must match number of slots in the string

Format Specifiers

 Syntax:

 %<width>.<precision><typeChar>

 Width gives total spaces to use

 0 (or width omitted) means as many as needed

 0n means pad with leading 0s to n total spaces

 -n means ―left justify‖ in the n spaces

 Precision gives digits after decimal point, rounding if needed.

 TypeChar is:

 f for float, s for string, or d for decimal (i.e., int) [can also use i]

 Note: this RETURNS a string that we can print

 Or write to a file using write(string), as you’ll need to do on the

homework 7assignment (HW7)

Q13-14, submit quiz

Begin HW5

 Although you have a reading assignment and Angel

quiz, you are strongly encouraged to begin working

on your homework early.

 If you have not completed the Eclipse-Pydev

installation and configuration, you must do it before

the next class session.

 Instructions are in the HW5 document.

