
POINTER RECAP

CSSE 120—Rose Hulman Institute of Technology



Recap: Declarations Reserve Space

 Variable declarations reserve space in memory:

 int x; /* reserves enough space for an int, names it x */

 double d; /* reserves enough space for a double, names it d */

 Formal parameter declarations do the same:

 void average(double sum, int count) {…}

 /* reserves enough space for a double (named sum) and 

an int (named count)*/



Recap: Variables with "Pointer 

Types" Store Addresses

 Besides holding "things" like ints and doubles, 

variables in C can also hold memory addresses

 Samples:

 int *xPtr; /* reserves enough space for an address, names it

xPtr, says that xPtr can store the address of another

variable that holds an int */

 double *dPtr; /* reserves enough space for an address, names it

dPtr, says that dPtr can store the address of another

variable that holds a double */



Recap: Pointer Operators, &

 The address operator, &:

 &var gives the address where var's value is stored

 Examples:

 xPtr = &x; /* Read "xPtr gets the address of x" */

 dPtr = &d; /* Read "dPtr gets the address of d" */



Recap: Pointer Operators, *

 Use * two ways:

 In type declarations, * says that the name refers to 

address of something: int *xPtr;  double *dPtr;

 In expressions, *var gives the "thing" pointed to by var

 Examples:

 printf("%d", *xPtr);

 *dPtr = 3.14159;

The format string, "%d", says that we want 

to print an int.  *xPtr is the thing pointed to 

by xPtr.  That is, *xPtr is the value of x.

This says that the thing pointed to by dPtr

should get the value 3.14159.  So the result 

is the same as d = 3.14159.



Pointer Assignments

int x=3, y = 5;

int *px = &x;

int *py = &y;

printf("%d %d\n", x, y);

*px = 10;

printf("%d %d\n", x, y);  /* x is changed  */

px = py;

printf("%d %d\n", x, y);  /* x not changed */

*px = 12;

printf("%d %d\n", x, y);  /* y is changed  */



Pointer Pitfalls

 Don't try to dereference an unassigned pointer:
 int *p;

*p = 5;     /* oops! Program probably dies! */

 Pointer variables must be assigned address values.
 int x = 3;

int *p;

p = x /* oops,  RHS should be &x */

 Be careful how you increment
 *p +=1;     /* is not the same as … */

 *p++;



Recap: Another look at the use of &

in scanf

 int x, y;

 scanf("%d %d", &x, &y);

 What would happen if we used y instead of &y?



We're not Punkin' you !



Recap: Using Pointers to "Return" 

Multiple Results

 C only allows us to return one value from a function

 Can use pointers to return multiples

 Suppose we want a function that takes an array 

and returns the mean, min, and max values:

 void calcStats(double values [ ], int count, 

double *mean, double *min, double *max) {

/* … some logic omitted …*/

*mean = meanValue; 

*min = minValue;

*max = maxValue;

}

This says that the thing pointed to 

by mean should get the value 

stored in meanValue.



Arrays as function parameters

 int [ ] and int * are equivalent, when used as formal 

parameters in a function definition.

 void f (int a[], int count) { …

 void f (int *a, int count)  { …

 Note that in neither case can we know the size of 

the array, unless it is passed in as a separate 

parameter.

 In either case, element 5 of a can be equivalently 

referred to as

 a[5]  

 *(a+5)



Using a pointer to step through an array

int arraySum(int *a, int count) {

int *final = a + count;

int *current;

int sum = 0;

for (current = a; current < final; current++)

sum += *current;

return sum;

}

Calling the arraySum function:

int numArray[] = {3, 4, 5, 6, 7, 8};

printf("Array sum is %d\n", arraySum(numArray, 6));



A function to exchange the values 

of two variables 

 Call it swap


