
PARAMETERS, INDEFINITE

LOOPS, AND LOOP PATTERNS

CSSE 120—Rose Hulman Institute of Technology

Review: Python parameter passing

 Formal parameters only receive the values of the

actual parameters

 Assigning a new value to a formal parameter does

not affect the actual parameter

 Python passes actual parameters by value

 Can Python functions mutate parameters?

Functions mutating parameters

 Can we write a function that exchanges the values of its two

parameters?

 In Eclipse checkout the project named Session11 from your

SVN repository

 Study the code in the module mutatingParameters.py but don’t

run it

 Together, observe what happens as we trace its execution in the

debugger

Q1

Modifying Parameters

 How do functions send information back?

 Return statements

Mutating parameters

 Value of actual parameter must be a mutable object

 State of the mutable object is changed

 The actual parameter itself is NOT changed since it refers to

the same object

 Parameter is still passed by value

Q2

Recap: Two main types of loops

 Definite Loop
We know at the beginning of the loop how many times its

body will execute

 Implemented in Python as a for loop.

 Cannot be an infinite loop

 Indefinite loop

 The body executes as long as some condition is True.

 Implemented in Python as a while statement.

 Can be an infinite loop if the condition never becomes

False.

 Python's for line in file: construct

 indefinite loop that looks syntactically like a definite loop!
Q3-4

Some indefinite loop patterns

 Interactive loops

 Sentinel loops

 File loops

 post-test loops

 "loop and a half"

Q5

Interactive: Make the user count

 Open module averageUserCount.py and execute it

together

 When does the loop terminate?

 Is this the best way to make the user enter input?

Why?

Why not?

Interactive: Ask user if there is more

 Open module averageMoreData.py and execute it

together

 User no longer has to count, but still has a big

burden

Q6

Sentinel loop

 Open module averageSentinel.py and study the

code then execute it together

 User signals end of data by a special "sentinel“

value

 Note that the sentinel value is not used in

calculations

Q7

Non-numeric Sentinel

 What if negative numbers are legitimate values?

 Open module averageOtherSentinel.py and study

the code

 Execute it together

What is the sentinel?

 Again note: sentinel value is not used in

calculations.

File loop

 Open module averageFile.py and execute together

with input file numbers.txt

 Uses a for loop as we have seen before

 Also note the conditional execution of main()

Q8

Escaping from a loop

 break statement ends the loop immediately

 Does not execute any remaining statements in loop body

 continue statement skips the rest of this iteration of

the loop body

 Immediately begins the next iteration

 return statement ends loop and function call

May be used with an expression

 within body of a function that returns a value

Or without an expression

 within body of a function that just does something

Q9

Interactive loop with graphics

 Display a window that contains a circle and a

message saying "Click inside Circle".

 Whenever the user clicks outside the circle, display

"You missed!"

 If the user clicks inside the circle, display "Bull's

eye!". Then pause and close the window.

 Implement together in module clickInsideCircle.py

Individual Exercise on Using loops

 Define function listAndMax() in module listMax.py that

 Prompts the user to enter numbers, one at a time

 Uses a blank line (<ENTER>) as sentinel to terminate input

 Accumulates the numbers in a list

 Uses a loop to calculate the maximum value of the numbers

 Returns two values:

 the list of numbers entered in the order they were entered

 the maximum value

 Define function main() in module listMax.py that

 Calls listAndMax()

 Prints the list of numbers entered

 Prints the maximum value of the list of numbers Q10 – hand in quiz

Start homework

 When you are through with your individual exercise

commit your solutions to your svn repository

 Start working on homework 11

