
OBJECT-ORIENTED CONCEPTS,

PROJECT WORK

CSSE 120—Rose Hulman Institute of Technology

Exam 2 Facts

 Date: Tuesday, October 16, 2007

 Time: 7:00 to 9:00 PM

 Venue: Section 1 (Delvin) O257

Section 3 (Curt) O267

Section 2 (Claude) A-G O257, H-Z O267

 Chapters: Zelle chapters 1 to 12 with greater

emphasis on chapters 6 to 12

 Organization: A paper part and a computer part,

just as on the first exam. Same resources allowed.

 topics for exam 1

 defining functions

 using functions

 decision structures

 exception handling

 loops

 indefinite(while)

 interactive

 sentinel

 file

 nested

 computing with Booleans

 random numbers

 top-down design

 bottom-up implementation

 objects

 defining & using new

classes

 data processing with Class

 encapsulation

 widgets

 lists (with objects, classes)

 process of OOD

 OO concepts

Possible topics for exam 2

Object-Oriented Programming

 Technique becoming standard practice in software

development

 Facilitates production of complex software

More reliable

 Cost-effective

Models real world

Object-Oriented Concepts

 Features that make development truly object-

oriented

 Encapsulation: Separating implementation details of an

object from how the object is used

 Inheritance: Defining new classes to borrow behavior

from 1 or more other classes

 Polymorphism: What an object does in response to a

method call depends on the type or class of the object

Encapsulation

 Separates object use (how it is used) from

object implementation (what it does)

 Implementation is independent of how it is used

Makes it easier to think about the code

 Client code sees a "black box" with a known

interface

 Implementation can change without changing client

Encapsulation Example

g = Fraction(12,6)

h = Fraction(6,11)

print g, h

print g.add(h)

Client code
class Fraction:

def __init__(self,

numerator=0,

denominator=1):

…

def __str__(self):

…

def add(self, other):

…

Fraction Class

Thinking Inside the Box g = Fraction(12,6)

h = Fraction(6,11)

print g, h

print g.add(h)

Client code

class Fraction:

"""Without normalization."""

def __init__(self, numerator=0, denominator=1):

self.num = numerator

self.den = denominator

def __str__(self):

if self.den == 0:

return 'undefined fraction'

fact = gcd(abs(self.num), abs(self.den))

if self.den < 0:

fact = -fact

return str(self.num // fact) + '/' + \

str(self.den // fact)

def add(self, other):

return Fraction(self.num*other.den + \

self.den*other.num, self.den*other.den)

Thinking Inside the Box g = Fraction(12,6)

h = Fraction(6,11)

print g, h

print g.add(h)

Client code

class Fraction:

"""With normalization."""

def __init__(self, numerator=0, denominator=1):

if denominator==0:

self.den = 0

self.num = 0

else:

fact = gcd(abs(numerator), abs(denominator))

if denominator < 0:

factor = -factor

self.num = numerator // fact

self.den = denominator // fact

def __str__(self):

if self.den == 0:

return 'undefined fraction'

return str(self.num) + '/' + str(self.den)

def add(self, other): (unchanged)

Function vs. object encapsulation

Functions Objects

Black box exposes: Function signature

(name, formal

parms, return value)

Constructor and

method signatures

Encapsulated inside

the box (i.e., what

we can change

without changing

client)

Operation

implementation

Data storage and

operation

implementation

Inheritance

 Superclass

 Base class that new class borrows from

 Instance variables and methods

Models a more general concept

 Subclass

 New class that borrows behavior from the superclass

Models a special case of the more general concept

More specialized class that inherits from the superclass

 Enhances the superclass

 Is a derived class

Relationship between classes

GridSquare

getTemp()

…

temp

…

Tree

fuel

calcNextTemp()

Rock

calcNextTemp()

Both Tree and

Rock inherit temp

and getTemp()

from GridSquare

Superclass

Subclass SubclassTree adds

the fuel

instance

variable

Tree and Rock both

define their own

calcNextTemp methods

Subclass definition

class GridSquare:

def __init__(self, row, col):

self.row = row

self.col = col

class Tree(GridSquare):

def __init__(self, row, col, fuel):

GridSquare.__init__(self, row, col)

self.fuel = fuel

Inheritance example

 Using Eclipse, checkout project OOConcepts from

the svn repository

 Execute the bankAccount program

 Study the code and answer quiz questions

5, 6, and 7

Polymorphism

 Behavior can vary depending on the actual type of

an object

 Consider the calcNextTemp() method

 Both Trees and Rocks can calcNextTemp, but they do so

differently

 Consider the ‘+’ operator

 5 + 6, 4.3 + 7.0, [1, 2, 3] + [4.3, 7.8]

 Consider Zelle graphics library

 circle.draw(window)

 rectangle.draw(window)

A polymorphism example

def main():

animals = [Animal("Garth")]

animals.append(Cat("Mittens"))

animals.append(Dog("Blacky"))

for animal in animals:

print "\n", str(animal) + " and I " \

+ animal.sound()

Look at animalSounds.py in the OOConcepts project

In-class exercise

 Add a CheckingAccount class as a subclass of

BankAccount

 Add a transactionCount instance variable to the

CheckingAccount class

 Without affecting the superclass BankAccount,

enhance the methods deposit() and withdraw() to

update transactionCount

 Add method getTransactionCount() to

CheckingAccount that returns the transaction count

 Test and commit your work to your SVN repository

Project Milestones

 Session 20 — Program Shows Game State:

 printBoard() and createBoard(listOfRows)

 Note that you have to design and implement some data

structure to track the board state

 Session 21 — Program Allows Player to Make Any

Single Move:

makeMove(chooseRow, chooseColumn, placeRow,

placeColumn)

 Session 22 — Game Finished

 DATE TBD — Final Presentation

Project Work

