
FILES & DYNAMIC MEMORY

ALLOCATION IN C

CSSE 120—Rose Hulman Institute of Technology

Final Exam Facts

 Date: Thursday, May 28, 2009

 Time: 6:00 to 10:00 PM

 Venue: Olin 257

 Chapters: Zelle chapters 1 to 12.1, Assigned C

readings from Schildt plus Web resources linked from

ANGEL Resources page

 You may bring two sheets of paper this time.

Q1,2

Inventory *createInventory(int count) {

Inventory *inv;

inv = (Inventory *)malloc(count*sizeof(Inventory));

if (inv == NULL) {

exit(EXIT_FAILURE);

}

// initialize

…

return inv;

}

int main() {

Inventory *inv = createInventory(2000);

…

free(inv);

}

Review: Dynamically allocating an array

typedef struct {

int itemNumber;

int quantity;

double unitPrice;

} Inventory;

Expanding or shrinking an array

 What if we wanted to add new items to our

inventory? We will need to grow our internal array.

How would we do this?

 malloc another array of the bigger size

 Then copy the data over to the new array using a loop

 Free the old array

Make inv point to the new array.

 Or, use realloc:

void *realloc(void *ptr, int amount);

Inventory *inv;

inv = malloc(oldSize*sizeof(Inventory));

…

// want to resize

inv = (Inventory *) realloc(inv, newSize*sizeof(Inventory));

if (inv == NULL) {

printf(“Allocation error\n”);

exit(EXIT_FAILURE);

}

Expanding or shrinking an array

Frees the block pointed to by inv and allocates a new block

of (newSize * sizeof(Inventory)) bytes. Note that realloc

returns a pointer to

the new memory! Any

idea why?

Re-alloc demo

 Do you think realloc will move the pointer to a new

location on the heap?

 Let’s find out…

Inventory *inv;

inv = malloc(oldSize*sizeof(Inventory));

…

// want to resize

inv = (Inventory *) realloc(inv, newSize*sizeof(Inventory));

if (inv == NULL) {

printf(“Allocation error\n”);

exit(EXIT_FAILURE);

}

Expanding or shrinking an array

Frees the block pointed to by inv and allocates a new block

of (newSize * sizeof(Inventory)) bytes. The new block

contains the contents of the original block up to the lesser of

the old and new sizes. Any additional new space is not

initialized. The new and original blocks may be at different

addresses.

Q1a

void resizeInventory(Inventory **inv, int newSize) {

Inventory *tmp = *inv;

tmp = (Inventory *)realloc(tmp, newSize*sizeof(Inventory));

if (tmp == NULL) {

printf(“Allocation error\n”);

}

*inv = tmp;

}

Inventory *inv = malloc(oldSize(sizeof(Inventory));

resizeInventory(&inv, 3600);

Using a function to resize an array

OPTIONAL: Advanced material for those interested. Can you

draw a box-and-pointer diagram to illustrate why we need

to pass a pointer to a pointer?

Dynamically allocate initialized memory

 malloc () allocates memory but the memory

allocated is NOT initialized

 If some memory was allocated, but not initialized,

what bad thing could happen?

 An uninitialized value (containing “junk”) could be

interpreted as an inventory item! Solution: use

calloc:

void *calloc(int n, int el_size);

Inventory *getInventory(int count) {

Inventory *inv;

inv = (Inventory *) calloc(count, sizeof(Inventory));

if (inv == NULL) {

exit(EXIT_FAILURE);

}

int i;

...

return inv;

}

Dynamically allocate initialized array

returns a void pointer (void *) to memory allocated for array of

count elements. Each element is of size sizeof(Inventory) bytes.

(Note, two arguments.) Returns NULL if fails. Memory is initialized.

Q1b

vs. malloc(count * sizeof(Inventory)); // uses single argument

Recap

 Use malloc to dynamically allocate uninitialized

memory

 Use calloc to dynamically allocate initialized

memory

 Use realloc to dynamically expand or shrink a block

of memory

File handling

 Need to include <stdlib.h> to access many file

handling functions and macros

 Open a file using fopen()

 Modes:

 “r” (read)

 “w” (write)

 “a” (append)

 Returns a file pointer to access the file: FILE*

 Close a file using fclose()

Q2,3

A simple example

FILE *inFile;

inFile = fopen(“my_file.txt”, “r”);

if (inFile == NULL) {

exit(EXIT_FAILURE);

}

// Read data from the file pointed to by inFile

fclose(inFile);

Q4,5

How do we read from a file?

 getc(my_fileptr) ; /* read the next character

from the file*/

 fgets(buffer, n, my_fileptr);

/* read the next line of text

from file, up to n-1 chars,

into buffer */

 fscanf(my_fileptr, “%d”, &num);

/* read the next int value

from file into variable

num*/

Q6 - 8

How do we write to a file?

 putc(c, my_fileptr) ; /* Converts int c to a char

and write it to file */

 fputs(my_string, my_fileptr);

/* Copies my_string to file,

except the string

terminating char */

 fprintf(my_fileptr, “%s\n”, my_string) ;

/* Similar to printf() except

the first parameter is a

file pointer */

Q9

File Handling

 Check out FileDemo from your SVN repo

 See problem description in comments

 Work on solving problem for 10 minutes

Q10

Keep working on HW27

 See instructions linked from ANGEL

 Due Friday at 11:59 PM

 To get your 10 pts for milestone 1, show your code

to your instructor or a TA.

 Work time in class today and during session 29

