
DYNAMIC MEMORY 

ALLOCATION, 

POINTERS TO STRUCTS

CSSE 120—Rose Hulman Institute of Technology



Final Exam Facts

 Date: Thursday, May 28, 2009

 Time:  6:00 to 10:00 PM

 Venue: Olin 257

 Chapters:  Zelle chapters 1 to 12.1, Assigned C 

readings from Schildt plus Web resources linked from 

ANGEL Resources page

 You may bring two sheets of paper this time.

Q1,2



Final Exam Facts

 Organization: A paper part and a computer part, 

similar to the first 2 exams.  

 The paper and pencil part will emphasize the C 

materials.

 There will be a portion in which we will ask you to  

compare and contrast C and Python language features 

and properties.

 The computer part will be in C.

 The computer part will be worth less than 50% of the 

total.

Q1,2



Memory Requirements

 Any variable requires a certain amount of memory. 

 Primitives, such an int, double, and char, 

typically may require between 1 and 8 bytes, 

depending on the desired precision, architecture, 

and Operating System’s support.

 Complex variables such as structs, arrays, and strings

typically require as many bytes as their 

components.



How large is this?

 sizeof operator gives the number bytes needed 

to store a value

 sizeof(char)

 sizeof(int)

 sizeof(double)

 sizeof(char *)

 sizeof(student)

 sizeof(jose)

 printf("size of char is %d bytes.\n", sizeof(char));

char *firstName;

int terms;

double scores; 

student jose;

typedef struct {

char *name;

int year;

double gpa; 

} student;

Q3



How large is this?

Q3

 32 bits = 4 bytes

 int : 4 bytes

 double : 8 bytes

 char : 1 byte

 pointer :  4 bytes



Memory Allocation

 In many programming languages, memory gets 

dynamically allocated as the need arises.

 Example: Lists in Python grow and shrink as we add 

or remove items from them. 

 In Python, memory gets allocated as the need 

arises.

 Memory gets freed up when it is no longer needed.



Memory Allocation

 In C, we have the ability to manually allocate 

memory.

 We typically do this when we know ahead of time 

the storage needs of a complex data-structure.

 We have seen this last time, when we did this:

char string[10];

 We allocated ten bytes to store a string.

 In some of the examples, we used all of the 

allocated bytes, in some, we did not.



Memory Deallocation

 When we allocate memory, we also need to free it 

up when we are done with it.

 Otherwise, we may well run out of the memory 

space allocated to us.



Memory allocation in C

 We use the malloc command to allocate memory.

 The syntax is:

malloc(<size>);

 The command returns a pointer to a memory 

location.

 We typically want to store that pointer.



Memory allocation in C - Example

 Suppose we want to reserve space for 10 doubles.

 We would do:

double *samples;

samples = (double *) malloc(count *sizeof(double));

 Memory is returned to as typeless.

 We give it a type by typecasting.



Memory Deallocation in C

 In order to deallocate memory, we use the free

command

 The syntax is:

free(<pointer>);

 To continue our example, we would do:

free(result);



Sample Project for Today

 Check out MallocSample from your SVN Repository

 Verify that it runs, get help if it doesn't



Returning Arrays from Functions

 In maf-main.c, remove the exit() call near the 

beginning.

 Run the program:

What happens?

Why?

 Original version of getSamples() just creates local 

storage that is recycled when function is done!

 If we want samples to persist beyond the function’s 

lifetime, we need to allocate memory using "malloc".

 Also need to #include <stdlib.h>

Q4



double *getSamples(int count) {

double *samples;

samples = (double *)malloc(count * sizeof(double));

if (samples == NULL) {

exit(EXIT_FAILURE);

}

int i;

for (i=0; i<count; i++) {

samples [i] = gaussian(82.5, 7.1);

}

return samples;

}

Dynamically allocating an array

Typecast to desired pointer type 

returns a void pointer (void *) to 

memory of specified size or NULL if 

request fails. Memory is uninitialized

Exit program if out of memory or 

cannot allocate for another reason
Q5, 6



Using Dynamically Allocated Array

double *sampleA;

double *sampleB;

int sampleCount = 5;

sampleA = getSamples(sampleCount);

sampleB = getSamples(sampleCount);

for (i=0; i<sampleCount; i++) {

printf%0.1lf\n", sampleA[i] + sampleB[i]);

}

free(sampleA);

free(sampleB); Don't forget to free the memory 

that was previously "malloc-ed".
Q7



Recap:  sizeof, malloc and free

 sizeof operator:  gives the number of bytes needed 

to store a value

 *malloc(<amount>): returns a pointer to space for 

an object of size amount, or NULL if the request 

cannot be satisfied.  The space is uninitialized. 

 void free(void *p): deallocates the space pointed to 

by p; does nothing if p is NULL.  p must point to 

memory that was previously dynamically allocated.

Descriptions from K&R, p. 252



Dynamically allocating strings

 Consider:

char *s1 = "Sams shop stocks short spotted socks. ";

char *s2;

 What if we wanted to create a copy of s1 and store 

it in s2 ?

s2 = (char *) malloc((strlen(s1) + 1) * sizeof(char));

strcpy(s2, s1);

 free(s2) when s2 is no longer needed.

Q8



Dynamically Allocating Structs

 Can use malloc to dynamically allocate structs

 We'll use this to create an Array data type soon 

that's "smarter" than the basic C version

 Will need to use pointers to structs

 student *zeb;

 Accessing elements of structs is different with 

pointers…



Pointers to Structs

 Direct reference

student debby = {"Deb", 2011, 2.9};

debby.gpa = 3.2;

printf("%s, Class of %d\n",

debby.name, debby.year);

 Use dot when you have 

the struct directly

 Pointer reference

student *aaron;

aaron = (student *) 

malloc(sizeof(student));

aaron->name = "Aaron";

aaron->year = 2009;

aaron->gpa = 3.1;

printf("%s, Class of %d\n",

aaron->name,aaron->year);

 Use "arrow" when you 

have a pointer to it
aaron->gpa is shorthand for (*aaron).gpa

Q9,10



Project Time

 Problem:

One nice feature of lists in Python is that they "know" 

their own length

 Suppose we want that in C

 Solution:

Make our own Array type and helper functions!

 Homework:

 Your final project in C.

 Check out SmarterArrays from your SVN repository

 See homework description linked from ANGEL


