
CSSE 120 DAY 1

Introduction to Software Development - Robotics

As you arrive

• Start up your computer

• Bookmark the course web site:

www.rose-hulman.edu/class/csse/

csse120/201030robotics/

http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/resources/Python/ZelleGraphics.html

Outline

 Roll call

 Introductions

 Introduction to course

 Hands-on Introduction to:

 Python, including zellegraphics

 Create Robots

Roll Call & Introductions

 Name (nickname)

 Hometown

 Where you live on (or off) campus

 Something about you that most people in the room

don't know

Q1-2This means you should be answering Questions #1 and 2 on the quiz 

Administrivia

 Course web site – note that this is a Robotics section

www.rose-hulman.edu/class/csse/

csse120/201030robotics/ (bookmark it now)

 Syllabus

 Student assistants in F-217

 Sunday through Thursday 7 p.m. to 11 p.m.

 Monday, Tuesday, Thursday and Friday 7th to 9th

 Consider routinely doing your homework in F-217 evenings

 Grading plan, attendance policy

 Late work policy

 Email to csse120-staff@rose-hulman.edu

 Honesty policy Q3-4

No background in

programming or

robotics is assumed.

http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/
http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm
http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm
http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm

Administrivia, continued

 Course Schedule – find it now (from course web site)

 Homework 1 due at start of next class

 Reading and Angel quiz on it

 Don‟t get hung up on the reading. If necessary, skim.

Always do the Angel quiz (you can take it up to 4 times).

 Programming part

 Put your name in a comment at the top of your Python file

 Style requirements will be added as course progresses

 Turn in the programming part via a Drop Box on Angel

 These slides – find them now (from Course Schedule)

 Evening exams:

 Thursday, April 1, 7 to 9 p.m. (Thursday before spring break)

 Thursday, April 29, 7 to 9 p.m. Q5-6

In the future, programming

assigned Monday is not due

until Wednesday noon.

Administrivia, continued again

 Angel ~ Lessons

 Homework

Where you take your Angel quizzes on the reading

 Drop Boxes for other homework

 Anonymous Suggestions Box

How to succeed in CSSE120

 Read the textbook before each class
 Take the ANGEL quiz over the reading
 If you don't do well, read again and retake quiz

 Ask questions on what you don't understand

 Try out the code if that is helpful to you

 Start early on the programming assignments
 Don't be satisfied with merely getting your code to “work.”

Be sure you understand it. If you don't, ask!

 Work and learn with other students
 But don't let them do your work for you

 Take advantage of instructor office hours and student
assistant lab hours

http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm
http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm

Basic Definitions

 Computer

 Device for manipulating data

 Under control of a changeable program

 Program

 Detailed set of instructions

 Step by step

 Meant to be executed by a computer

Q7

The two ends of programming

1. See the Big Picture

2. Get the Details Right

Many important programming techniques are methods

of getting from #1 to #2.

Some Computer Science Questions

 What can be computed?

 How to compute it efficiently?

 What is the best way to turn a mass of raw data

into usable information?

Q8

What is an Algorithm?

 Step-by-step procedure for accomplishing

something

 Presented at the right level of detail (and in the

right language) for the one who will execute it

Algorithm Analogy -- Recipe

 Bake a cake

 Instructions for an experienced cook

 Instructions for a 7-year-old

 Instructions in French

Algorithm for a very simple task

 For a student to execute.

 For a robot to execute.

Q9

Four important CS skills

 Design algorithms

 Analyze algorithms

 Evaluate algorithms

 Adapt algorithms

Human Languages vs.

Programming Languages

 Ambiguous vs. very precise

 Syntax (form) must exactly match …

 CaSe MAtterS

 Semantics (meaning)

 Translation

 High-level language (Maple, Java, Python, C) to

 Low-level language (machine language)

 Compiler, interpreter

PYTHON:

A PROGRAMMING

LANGUAGE!

Follow these instructions to:

1. Confirm that you have Python installed

2. Install the zellegraphics package

Do NOT install Pycreate and the Bluetooth Transmitter yet;

we will do that later in today’s session (or as homework, as

time permits).

http://www.rose-hulman.edu/class/csse/resources/Python/ZelleGraphics.html

Key ideas from live coding session:
evaluation in the interpreter, variables (case matters!), assignment

 In the interactive Python shell (at the >>> prompt), try:

 3 + 4

 3 + 4 * 2

 An expression that adds 3 and 4 and then multiplies the result by 2

 width = 4

 height = 5

 width

 width, height

 width = width + 2

 width

 Width

The interpreter evaluates the expression that it is

given and shows the result

Assignment: read it as “width GETS 4”

Terrible mathematics, but common programming

paradigm: increment width by 2

Case matters. Try to decipher the error message.

Key ideas from live coding session:
defining functions, calling functions

 In the interactive Python shell (at the >>> prompt), try:

 triangleArea = width * height / 2

 triangleArea

 def rectangleArea(width, height):

return width * height

 rectangleArea(6, 8)

 rectangleArea(9, 3)

 width

 triangleArea

Defining a function. Note the colon

and subsequent indentation.

Calling a function

Note the difference between triangleArea

(a variable) and rectangleArea (a function).

Note that the parameter width in the

definition of the function rectangleArea has

nothing to do with the variable width defined

earlier.

Key ideas from live coding session:
importing modules

 In the interactive Python shell (at the >>> prompt), try:

 abs(-7)

 sin(pi/3)

You‟ll get an error

message from the above

 import math

 math.sin(math.pi / 3)

 from math import *

 sin(pi/3)

Some functions are built-in

Do you see the difference between

import X

and

from X import *

Use the latter with caution.

Some aren’t. Importing module X

lets you use X.name to refer to

things defined in module X

Key ideas from live coding session:
strings and comments

 In the interactive Python shell (at the >>> prompt), try:

 “hello”

 „hello‟

 width + height

 “width” + “height”

 “width” * height

 “width” * “height”

 # This is a comment.

 # It is ignored by the interpreter, but important help to human readers.

Double-quotes …

… are the same in Python as single-

quotes (not typical of other languages)

Do you see the difference between

variable names and string constants?

This one is cool! Can you guess what will happen?

Note that height is NOT in quotes.

The same thing with height is quotes yields an error.

Do you see why?

Key ideas from live coding session:
saving and running a Python script

 Do File ~ New, then File ~ Save and save the file as (say)

Session1.py.

 Put into the file

 5

 Then run the file by Run ~ Run Module (or just F5 if you prefer).

Nothing happens. Then add

 print 5

to the file and run the file again.

Also try both of the above in the

interpreter shell.

 Now add to the file

 print width

and run again. Note the error message and where it appears.

Do you see the difference

between evaluating in the

interactive Python Shell and

running a script?

And how print relates to that?

And where error messages

appear when you run a script?

Key ideas from live coding session:
zellegraphics! Constructing and using objects!

 Put the following into your file (erasing what was there). As

you type each line, run the file and see what results.

from zellegraphics import *

win = GraphWin('Our First Graphics Demo', 700, 500)

line = Line(Point(20, 30), Point(300, 490))

line.draw(win)

thickLine = Line(Point(30, 490), Point(200, 30))

thickLine.setWidth(5)

thickLine.setOutline('red')

thickLine.draw(win)

circle = Circle(Point(500, 100), 70)

circle.setFill('blue')

circle.draw(win)

Constructs a GraphWin and

makes the variable win refer to it

Constructs Point objects, then a Line object from them

Changes the characteristics of the

Line to which thickLine refers

As you type this, pause after typing the dot.

Cool, huh?

Add more stuff to your drawing. Experiment!

Key ideas from live coding session:
Loops! and range!

 Back in the interpreter (at the >>> prompt), try:

 range(12)

 range(2, 12)

 range(2, 12, 3)

 for k in range(6):

print k, k * k

Note that this yields 0 to 11 (not 12)

Note the colon and subsequent indentation

Your turn: Write a for loop that prints:

0, 8

1, 7

2, 6

3, 5

4, 4

5, 3

6, 2

7, 1

Key ideas from live coding session:
Loops and zellegraphics => animation!

 Back in your Session1.py file, add:

 for k in range(7):

circle = Circle(Point(50, 50), k * 8)

circle.draw(win)

 Then add:

 rectangle = Rectangle(Point(350, 450), Point(400, 500))

rectangle.setFill('green')

rectangle.draw(win)

import time

for i in range(300):

rectangle.move(-1, -1)

time.sleep(0.01)

Again note the colon and subsequent indentation

Cool, yes?!

Better style: put this line at the beginning of your file

Animation! Questions?

Q10-12You’ll need to figure out how to “un-draw” a graphical object.

Remember that typing a dot and pausing gives help!

Begin the programming problem in

Homework 1, as follows:

 Create a new file called homework1.py

 Please name it exactly like that – all lower case, no spaces,

ends in .py

 Your file should implement a Python program that

creates a graphical scene. Your scene must include

some animation, via a loop.

 Be creative and have some fun with this!

 The first lines of the file must be:

 A comment with your name, followed by:

 A comment that is a 1-sentence description of your scene.

 Ask questions as needed!

