
ARRAYS AND POINTERS IN C

CSSE 120 — Rose-Hulman Institute of Technology

void foo(int *a){
*a = 7;
printf("%d\n", *a);

}

int b = 3;
foo(&b);
printf("%d\n", b);

Reminder: Using a pointer to change the
value of an actual parameter

Send the address of b

Receive an address

Modify value at address

From the last homework:

swap: a function to exchange the values of two
variables

Let's look at some possible wrong approaches and
why they would not work

Q1

void swap1(int x, int y) {
x = y;
y = x;

}

void swap2(int x, int y) {
int temp;
temp = y;
y = x;
x = temp;

}

void swap3(int *x, int *y) {
int *temp;
temp = y;
y = x;
x = temp;

}
Q1

C Arrays

C Arrays are like Python lists
But there are limitations on how they can be
mutated

An example using lists in Python

Consider the following Python Code:
list = [1, “spam”, 4, “U”]
list.append(2)
list.remove(“U”)
length = len(list)

What do these statements tell us about Python lists?
Type does not matter
They are dynamically allocated
Can be expanded or shrunk
Size not specified

List in Python vs Array in C

No built-in list type in C
Array is closest data structure to Python's list
Consider this C code
int SIZE = 4;
int nums[SIZE];

int i;
for(i = 0; i < SIZE; i++)

nums[i] = i * i;

How is this similar to lists in Python?
Different? Q2, 3

Initialization and access

How do we initialize a list or array?
Python list: a = [1, 3, 5]
C array: int a[] = {1, 3, 5};

How do we access an element?
Python list: x = a[i]
C array: x = a[i];

How do we access the last element?
Python list: x = a[-1]
C array: x = a[SIZE - 1]; // the array doesn’t

know its size.

Quiz: Write countEvens

int countEvens(int nums[], int size) {

// Returns the count of even numbers in the nums array.

// TODO: complete this function…

return count;

}

int main() {

int SIZE = 7;

int a[] = {16, 5, 23, 19, 42, 17, 12};

int evens = countEvens(a, SIZE);

printf("The number of even numbers is %d.\n", evens);

return 0;

}

Q4

Working with arrays

1. Checkout the ArraysAndRefs project from SVN
2. In function main() declare a variable, scores, to

store an array of integers.
3. Implement the function readScores() that initializes

an array of integers
4. Test the function by invoking it in main() and using

function printArray() to print the values stored in
the array

5. If time permits, also enter your countEvens()
function from the quiz and test it

Arrays and Pointers

In C there is a strong relationship between arrays
and pointers

An array occupies a fixed location in memory
Its address cannot be changed

Any operation that can be achieved by indexing
(e.g., a[i]) can be done with pointers
The pointer version will be

a bit more challenging to implement at first
but faster in some cases

How arrays and pointers relate

int a[10];

a[0] a[1] a[9]

a:

int a[10]; defines an array of size 10, i.e., a block of 10 consecutive integers named
a[0], a[1], …, a[9]. a is really the starting address of the array.

Each element in the array is accessed
using the notation a[i] where i is the index
of the ith element.

How arrays and pointers relate

int a[10];

int *pa;

pa = &a[0]; or
pa = a;

a[0] a[1] a[9]

a:

pa: pa += 1: pa += 4:

Q5

Pointer variable
that sits

somewhere in
memory

Make pa point
to (the first

element of) the
array

Make it point to
the next element

in the array

Make it point to
a[5]

Summary of arrays and pointers

int *pa; declares a pointer to an integer
Set pa to point to array a

pa = a;
pa = &a[0];

Copy the content of a[0] into x
int x = a[0];
int x = *pa;

Summary of arrays and pointers (2)

Point to the second element in the array
pa + 1
&a[1]

Copy the content of a[1] into y
int y = a[1];
int y = *(pa + 1);

Arrays as function parameters

int [] and int * are equivalent, when used as formal
parameters in a function definition, e.g., …

void f (int a[], int count) { …
void f (int *a, int count) { …

Note that in neither case can we know the size of
the array, unless it is passed in as a separate
parameter.
In either case, the 6th element of a can be
equivalently accessed as

a[5]
*(a+5) // treating array a as a pointer

Q6

Using pointers with arrays

How do we modify printArray() so that it uses
pointers instead of array indexing?
Implement:

void printArrayThePointerWay(int* a, int m) {…}

Test the function by invoking it in main(), like so:
printArrayThePointerWay(scores, size)

HW Warm-up: Thinking of a Sort

Homework asks you to imagine you are a real
estate agent who is helping potential home buyers
to analyze the prices of homes in Vigo county.
In order to analyze those prices you may need to
sort the prices.
Given:
double ratings[] = {2.4, 5.0, 4.4, 3.2, 0.1};

What would we do to sort ratings in ascending
order?

	ARRAYS AND POINTERS IN C
	Reminder: Using a pointer to change the value of an actual parameter
	From the last homework:
	Slide Number 4
	C Arrays
	An example using lists in Python
	List in Python vs Array in C
	Initialization and access
	Quiz: Write countEvens
	Working with arrays
	Arrays and Pointers
	How arrays and pointers relate
	How arrays and pointers relate
	Summary of arrays and pointers
	Summary of arrays and pointers (2)
	Arrays as function parameters
	Using pointers with arrays
	HW Warm-up: Thinking of a Sort

