
DEFINING CLASSES IN

PYTHON

CSSE 120—Rose Hulman Institute of Technology

Final Exam Facts

 Date: Monday, May 24, 2010

 Time: 6 p.m. to 10 p.m.

 Venue: O167 or O169 (your choice)

 Organization: Paper part and computer part, similar to other exams

 The paper part will emphasize both C and Python.
 You may bring two double-sided sheets of paper this time.

 There will be a portion in which we will ask you to compare and

contrast C and Python language features and properties.
 Solve same problem in both languages

 Explain similarities and differences

 The computer part will be in C.
 The computer part will be worth approximately 65% of the total.

 Details for both parts to be discussed later today (and placed in

Session 30 Resources on the course Schedule page)
Q1-2

 What memory is allocated by the example below?

 Answer: memory for:

 An int (called x)

 A char* (called p)

 A double (called y)

 10 char’s (called string)

 When is that memory allocated?

 Answer: Every time the function is called

 What is that memory initialized to?

 Answer: x and p are copies of the actual arguments passed to the function.

(Note that p is a copy of a pointer, so has the same pointee as its actual

argument.) y and string are uninitialized (i.e. garbage).

 When is that memory returned to the system?

 Answer: Every time the function returns to whatever called it

 What happens to that memory after it is returned to the system?

 Answer: Anything! You cannot count on it remaining unchanged.

 This is called static allocation. The memory is allocated from the stack.

void foo(int x, char* p) {

double y;

char string[10];

...

}

Review: Static

Memory Allocation

Q3-6

Review: Dynamic Memory allocation

 Suppose we want to reserve space for 10 doubles.

 We would do:

double* samples;

samples = (double*) malloc(10 * sizeof(double));

 The memory returned to you can store objects of any type (void

pointer). We give it the desired type by typecasting.

 That’s the (double*)

 Use the allocated memory using the usual array notation (if more

than one place is allocated), e.g.

for (k = 0; k < 10; ++k) {

samples[k] = …

} Q7-10

WIDTH = 400

HEIGHT = 50

REPEAT_COUNT = 20

PAUSE_LENGTH = 0.25

win = GraphWin(‘Saints Win!', WIDTH, HEIGHT)

p = Point(WIDTH/2, HEIGHT/2)

t = Text(p, ‘Saints—2010 Super Bowl Champs!')

t.setStyle('bold')

t.draw(win)

t.setFill('blue')

nextColorIsRed = True

for i in range(REPEAT_COUNT):

sleep(PAUSE_LENGTH)

if nextColorIsRed:

t.setFill('red')

else:

t.setFill('blue')

nextColorIsRed = not nextColorIsRed

win.close()

Review: Using Objects in Python

Constructing

objects: a

GraphWin, a

Point, and a

Text
Doing things

with the t object

that is a Text

Review: What is an Object?

 An Object:

 knows things about itself

 fields

 a.k.a. instance variables

 can be asked to (based on what it knows)

 do things

 mutator methods

 provide info about itself and/or other objects that it knows

about

 accessor methods

 Is an instance of a C structure an Object?
Q11-12

Review: Object Terminology

 Objects are data types that might

be considered active

 They store information

in fields (aka instance variables)

 They manipulate their data

through methods

 Same concept as functions, but OO

 Each object is an instance of some

class

 Objects are created by calling

constructors

 UML class diagram:

x

y

…

Point

getX()

getY()

move(dx,dy)

…

Fields

(instance variables)

written here

Methods

written here

Q13-16

Key Concept!

 A class is an "object factory"

 Calling the constructor tells the classes to make a new

object

 Parameters to constructor are like "factory options",

used to set instance variables

 Or think of class like a "rubber stamp"

 Calling the constructor stamps out a new object shaped

like the class

 Parameters to constructor "fill in the blanks". That is,

they are used to initialize instance variables.

Example

 p = Point(200, 100)

 t = Text(p, 'Go Giants!')

Point

x _______

y _______

fill _______

outline _______

getX() …

getY() …

…

200

100

'black'

'black'

Text

anchor _______

text _______

getAnchor() …

getText() …

setText(text)

setStyle(style)

…

p

'Go Giants'

Point

x _______

y _______

fill _______

outline _______

getX() …

getY() …

…

200

100

'black'

'black'

t

This is a clone of p

Creating Custom Objects:

Defining Your Own Classes

 Custom objects:

 Hide complexity

 Provide another way to break problems into pieces

Make it easier to pass information around

 Example:

Moving "Smiley" class.

 Switch workspace to your

Python workspace

 Checkout the

30-ClassesSmileys

project from SVN

class Smiley

def __init__ (self, initX, initY, dx, dy, size=40...):

self.dx = dx

self.dy = dy

...

self.moving = True

...

self.head = Circle(Point(initX, initY), size)

...

self.parts = [self.head, self.leftEye, self.rightEye,

self.smileBase, self.smileLeft,

self.smileRight, self.centerPoint]

def draw(self, win):

for part in self.parts:

part.draw(win);

...

Summary:

Defining classes

Q17-25

Review of Key Ideas

 Constructor:

 Defined with special name __init__

 Called like ClassName()

 Fields (aka instance variables):

 Created when we assign to them, using

self.blah = ...

 Live as long as the object lives

 Can be referenced anywhere in the class definition

 self formal parameter:

 Implicitly get the value before the dot in the call

 Allows an object to “talk about itself” in a method

 Rest of class:

 Do survey on Angel, our course, under

Lessons: End of course survey for

CSSE 120, Robotics Section

 Do anonymous course evaluation

on Banner Web

 From the Schedule page, Session 30,

download Final Exam Topics and

Sample Problems

 Look it over and ask questions

 Work problems from it

 I will be in my office or CSSE lab F-217:

 Friday: 9:30 a.m. to 5 p.m.

 Saturday: 10 a.m. to noon

and 4 p.m. to 6 p.m.

 Sunday: 12:30 to 4:30 p.m.

 Monday: 9:30 a.m. to 5 p.m.

 Best way to prepare for

the final exam:

1. Prepare a good cheat

sheet for the written

problems, based on the

Final Exam Topics and

Sample Problems.

2. Do sample problems from

that document that you are

unsure about.

 Do them in the CSSE

lab F-217, where you

can get help from me

or a student.

3. Review/do the C

homeworks.

• Have your examples

ready for the exam

